Using Composite Phenotypes to Reveal Hidden Physiological Heterogeneity in High-Altitude Acclimatization in a Chinese Han Longitudinal Cohort.

IF 3.7 Q2 GENETICS & HEREDITY Phenomics (Cham, Switzerland) Pub Date : 2021-02-01 DOI:10.1007/s43657-020-00005-8
Yi Li, Yanyun Ma, Kun Wang, Menghan Zhang, Yi Wang, Xiaoyu Liu, Meng Hao, Xianhong Yin, Meng Liang, Hui Zhang, Xiaofeng Wang, Xingdong Chen, Yao Zhang, Wenyuan Duan, Longli Kang, Bin Qiao, Jiucun Wang, Li Jin
{"title":"Using Composite Phenotypes to Reveal Hidden Physiological Heterogeneity in High-Altitude Acclimatization in a Chinese Han Longitudinal Cohort.","authors":"Yi Li,&nbsp;Yanyun Ma,&nbsp;Kun Wang,&nbsp;Menghan Zhang,&nbsp;Yi Wang,&nbsp;Xiaoyu Liu,&nbsp;Meng Hao,&nbsp;Xianhong Yin,&nbsp;Meng Liang,&nbsp;Hui Zhang,&nbsp;Xiaofeng Wang,&nbsp;Xingdong Chen,&nbsp;Yao Zhang,&nbsp;Wenyuan Duan,&nbsp;Longli Kang,&nbsp;Bin Qiao,&nbsp;Jiucun Wang,&nbsp;Li Jin","doi":"10.1007/s43657-020-00005-8","DOIUrl":null,"url":null,"abstract":"<p><p>Altitude acclimatization is a human physiological process of adjusting to the decreased oxygen availability. Since several physiological processes are involved and their correlations are complicated, the analyses of single traits are insufficient in revealing the complex mechanism of high-altitude acclimatization. In this study, we examined these physiological responses as the composite phenotypes that are represented by a linear combination of physiological traits. We developed a strategy that combines both spectral clustering and partial least squares path modeling (PLSPM) to define composite phenotypes based on a cohort study of 883 Chinese Han males. In addition, we captured 14 composite phenotypes from 28 physiological traits of high-altitude acclimatization. Using these composite phenotypes, we applied k-means clustering to reveal hidden population physiological heterogeneity in high-altitude acclimatization. Furthermore, we employed multivariate linear regression to systematically model (Models 1 and 2) oxygen saturation (SpO<sub>2</sub>) changes in high-altitude acclimatization and evaluated model fitness performance. Composite phenotypes based on Model 2 fit better than single trait-based Model 1 in all measurement indices. This new strategy of using composite phenotypes may be potentially employed as a general strategy for complex traits research such as genetic loci discovery and analyses of phenomics.</p>","PeriodicalId":74435,"journal":{"name":"Phenomics (Cham, Switzerland)","volume":"1 1","pages":"3-14"},"PeriodicalIF":3.7000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s43657-020-00005-8","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phenomics (Cham, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43657-020-00005-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 7

Abstract

Altitude acclimatization is a human physiological process of adjusting to the decreased oxygen availability. Since several physiological processes are involved and their correlations are complicated, the analyses of single traits are insufficient in revealing the complex mechanism of high-altitude acclimatization. In this study, we examined these physiological responses as the composite phenotypes that are represented by a linear combination of physiological traits. We developed a strategy that combines both spectral clustering and partial least squares path modeling (PLSPM) to define composite phenotypes based on a cohort study of 883 Chinese Han males. In addition, we captured 14 composite phenotypes from 28 physiological traits of high-altitude acclimatization. Using these composite phenotypes, we applied k-means clustering to reveal hidden population physiological heterogeneity in high-altitude acclimatization. Furthermore, we employed multivariate linear regression to systematically model (Models 1 and 2) oxygen saturation (SpO2) changes in high-altitude acclimatization and evaluated model fitness performance. Composite phenotypes based on Model 2 fit better than single trait-based Model 1 in all measurement indices. This new strategy of using composite phenotypes may be potentially employed as a general strategy for complex traits research such as genetic loci discovery and analyses of phenomics.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用复合表型揭示中国汉族纵向队列高海拔适应中隐藏的生理异质性。
高原环境适应是人类适应缺氧环境的生理过程。由于高原适应过程涉及多个生理过程,且相互关系复杂,单性状分析不足以揭示高原适应的复杂机制。在这项研究中,我们将这些生理反应作为由生理性状线性组合所代表的复合表型进行了研究。基于对883名中国汉族男性的队列研究,我们开发了一种结合光谱聚类和偏最小二乘路径建模(PLSPM)的策略来定义复合表型。此外,我们还捕获了28个高原适应生理性状的14个复合表型。利用这些复合表型,我们采用k-means聚类方法揭示了种群在高海拔环境适应中隐藏的生理异质性。在此基础上,采用多元线性回归对高原环境下氧饱和度(SpO2)的变化进行了系统建模(模型1和模型2),并评价了模型的适应度表现。基于模型2的复合表型在各测量指标上的拟合优于基于单一性状的模型1。这种利用复合表型的新策略可能被用作复杂性状研究的一般策略,如遗传位点发现和表型组学分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Senescence-Related LncRNAs: Pioneering Indicators for Ovarian Cancer Outcomes. Investigation on Phenomics of Traditional Chinese Medicine from the Diabetes. Expert Consensus on Big Data Collection of Skin and Appendage Disease Phenotypes in Chinese. Dissecting the Implications of Calumenin in Malignancy and Heterogeneity of the Microenvironment of Clear Cell Renal Cell Carcinoma Using Multi-Omics Data. Associations of Plasma Lipidomic Profiles with Uric Acid and Hyperuricemia Risk in Middle-Aged and Elderly Chinese.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1