{"title":"Plant mediated synthesis of Iron nanoparticles and their Applications: A Review","authors":"H. Thacker, V. Ram, P. Dave","doi":"10.33945/sami/pcbr.2019.183239.1033","DOIUrl":null,"url":null,"abstract":"Nanoparticles form the basis of Nanoscience and nanotechnology which are considered as the most growing disciplines amongst various fields of science. Various methods for synthesis of nanoparticles include conventional methods like hydrothermal method, sol-gel method, laser-ablation, electrochemical techniques, and thermal methods. However biogenic synthesis of iron nanoparticles is advantageous over conventional methods due to its eco-friendly, simple, cost-effective and non-toxic properties. Iron nanoparticles possess wide range of application from environmental remediation to magnetization of sediments and they are also known to possess anti-oxidant and anti-bacterial activity. Extracts of various plants like green tea, Amaranthus dubius, and Eichhornia Crassipes, Cynometra Ramiflora, and Eucalyptus tereticornis, Melaleuca Nesophila Rosemarinus Officinalis are reported for synthesis of iron nanoparticles. Different environmental remediation applications of iron nanoparticles include degradation of dyes, removal of nitrate, hexavalent chromium, arsenate, arsenite, chemical oxygen demand and total phosphates. This review focuses on various plant extracts utilized for synthesis of iron nanoparticles and their potential applications. Different classes of phytochemicals responsible for conversion of precursor iron to nano-sized iron material, various characterization techniques for iron nanomaterials fabricated using plant extracts and optimum conditions for pollutant removal are also discussed.","PeriodicalId":20668,"journal":{"name":"Progress in Chemical and Biochemical Research","volume":" 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Chemical and Biochemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33945/sami/pcbr.2019.183239.1033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
Nanoparticles form the basis of Nanoscience and nanotechnology which are considered as the most growing disciplines amongst various fields of science. Various methods for synthesis of nanoparticles include conventional methods like hydrothermal method, sol-gel method, laser-ablation, electrochemical techniques, and thermal methods. However biogenic synthesis of iron nanoparticles is advantageous over conventional methods due to its eco-friendly, simple, cost-effective and non-toxic properties. Iron nanoparticles possess wide range of application from environmental remediation to magnetization of sediments and they are also known to possess anti-oxidant and anti-bacterial activity. Extracts of various plants like green tea, Amaranthus dubius, and Eichhornia Crassipes, Cynometra Ramiflora, and Eucalyptus tereticornis, Melaleuca Nesophila Rosemarinus Officinalis are reported for synthesis of iron nanoparticles. Different environmental remediation applications of iron nanoparticles include degradation of dyes, removal of nitrate, hexavalent chromium, arsenate, arsenite, chemical oxygen demand and total phosphates. This review focuses on various plant extracts utilized for synthesis of iron nanoparticles and their potential applications. Different classes of phytochemicals responsible for conversion of precursor iron to nano-sized iron material, various characterization techniques for iron nanomaterials fabricated using plant extracts and optimum conditions for pollutant removal are also discussed.