{"title":"A RASPBERRY PI SELF-DRIVING CART BASED ON OPENCV AND DEEP LEARNING .","authors":"","doi":"10.29121/ijesrt.v10.i3.2021.8","DOIUrl":null,"url":null,"abstract":"The self-driving trolley created in this thesis uses cameras and ultrasonic sensors to obtain roadway information, and a deep learning based target recognition algorithm to find out which are the targets in the data obtained, so that the trolley can drive itself on a simulated roadway with functions such as obstacle avoidance and traffic signal recognition. Originally the car used a Raspberry Pi 3b+, but here the jetson nano, which is better than the Raspberry Pi 3b+, is used to implement it.","PeriodicalId":11002,"journal":{"name":"Day 1 Tue, March 23, 2021","volume":" 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, March 23, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29121/ijesrt.v10.i3.2021.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The self-driving trolley created in this thesis uses cameras and ultrasonic sensors to obtain roadway information, and a deep learning based target recognition algorithm to find out which are the targets in the data obtained, so that the trolley can drive itself on a simulated roadway with functions such as obstacle avoidance and traffic signal recognition. Originally the car used a Raspberry Pi 3b+, but here the jetson nano, which is better than the Raspberry Pi 3b+, is used to implement it.