Oscillations of the circadian clock protein, BMAL-1, align to daily cycles of mechanical stimuli: a novel means to integrate biological time within predictive in vitro model systems.

Hannah K Heywood, Laurence Gardner, Martin M Knight, David A Lee
{"title":"Oscillations of the circadian clock protein, BMAL-1, align to daily cycles of mechanical stimuli: a novel means to integrate biological time within predictive in vitro model systems.","authors":"Hannah K Heywood,&nbsp;Laurence Gardner,&nbsp;Martin M Knight,&nbsp;David A Lee","doi":"10.1007/s44164-022-00032-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>In vivo, the circadian clock drives 24-h rhythms in human physiology. Isolated cells in vitro retain a functional clockwork but lack necessary timing cues resulting in the rapid loss of tissue-level circadian rhythms. This study tests the hypothesis that repeated daily mechanical stimulation acts as a timing cue for the circadian clockwork. The delineation and integration of circadian timing cues into predictive in vitro model systems, including organ-on-a-chip (OOAC) devices, represent a novel concept that introduces a key component of in vivo physiology into predictive in vitro model systems.</p><p><strong>Methods: </strong>Quiescent bovine chondrocytes were entrained for 3 days by daily 12-h bouts of cyclic biaxial tensile strain (10%, 0.33 Hz, Flexcell) before sampling during free-running conditions. The core clock protein, BMAL-1, was quantified from normalised Western Blot signal intensity and the temporal oscillations characterised by Cosinor linear fit with 24-h period.</p><p><strong>Results: </strong>Following entrainment, the cell-autonomous oscillations of the molecular clock protein, BMAL-1, exhibited circadian (24 h) periodicity (<i>p</i> < 0.001) which aligned to the diurnal mechanical stimuli. A 6-h phase shift in the mechanical entrainment protocol resulted in an equivalent shift of the circadian clockwork. Thus, repeated daily mechanical stimuli synchronised circadian rhythmicity of chondrocytes in vitro.</p><p><strong>Conclusion: </strong>This work demonstrates that daily mechanical stimulation can act as a timing cue that is sufficient to entrain the peripheral circadian clock in vitro. This discovery may be exploited to induce and sustain circadian physiology within into predictive in vitro model systems, including OOAC systems. Integration of the circadian clock within these systems will enhance their potential to accurately recapitulate human diurnal physiology and hence augment their predictive value as drug testing platforms and as realistic models of human (patho)physiology.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s44164-022-00032-x.</p>","PeriodicalId":73357,"journal":{"name":"In vitro models","volume":"1 6","pages":"405-412"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9767245/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In vitro models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44164-022-00032-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Purpose: In vivo, the circadian clock drives 24-h rhythms in human physiology. Isolated cells in vitro retain a functional clockwork but lack necessary timing cues resulting in the rapid loss of tissue-level circadian rhythms. This study tests the hypothesis that repeated daily mechanical stimulation acts as a timing cue for the circadian clockwork. The delineation and integration of circadian timing cues into predictive in vitro model systems, including organ-on-a-chip (OOAC) devices, represent a novel concept that introduces a key component of in vivo physiology into predictive in vitro model systems.

Methods: Quiescent bovine chondrocytes were entrained for 3 days by daily 12-h bouts of cyclic biaxial tensile strain (10%, 0.33 Hz, Flexcell) before sampling during free-running conditions. The core clock protein, BMAL-1, was quantified from normalised Western Blot signal intensity and the temporal oscillations characterised by Cosinor linear fit with 24-h period.

Results: Following entrainment, the cell-autonomous oscillations of the molecular clock protein, BMAL-1, exhibited circadian (24 h) periodicity (p < 0.001) which aligned to the diurnal mechanical stimuli. A 6-h phase shift in the mechanical entrainment protocol resulted in an equivalent shift of the circadian clockwork. Thus, repeated daily mechanical stimuli synchronised circadian rhythmicity of chondrocytes in vitro.

Conclusion: This work demonstrates that daily mechanical stimulation can act as a timing cue that is sufficient to entrain the peripheral circadian clock in vitro. This discovery may be exploited to induce and sustain circadian physiology within into predictive in vitro model systems, including OOAC systems. Integration of the circadian clock within these systems will enhance their potential to accurately recapitulate human diurnal physiology and hence augment their predictive value as drug testing platforms and as realistic models of human (patho)physiology.

Supplementary information: The online version contains supplementary material available at 10.1007/s44164-022-00032-x.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物钟蛋白BMAL-1的振荡与机械刺激的日常周期一致:一种将生物时间整合到预测性体外模型系统中的新方法。
目的:在体内,生物钟驱动人体生理的24小时节律。体外分离的细胞保留了功能性的生物钟,但缺乏必要的时间线索,导致组织水平的昼夜节律迅速丧失。这项研究验证了一个假设,即每天重复的机械刺激可以作为生物钟的时间线索。将昼夜节律时序线索描述和整合到预测体外模型系统中,包括器官芯片(OOAC)设备,代表了一个新概念,将体内生理学的关键组成部分引入预测体外模型系统。方法:在自由运行条件下取样前,静止的牛软骨细胞在每天12小时的循环双轴拉伸应变(10%,0.33 Hz, Flexcell)下培养3天。核心时钟蛋白BMAL-1通过标准化的Western Blot信号强度和以余弦线性拟合为特征的24小时周期的时间振荡来量化。结果:在携带后,分子钟蛋白BMAL-1的细胞自主振荡表现出昼夜节律(24小时)周期性(p)。结论:这项工作表明,每天的机械刺激可以作为一个时间线索,足以在体外携带外周生物钟。这一发现可用于诱导和维持体外预测模型系统内的昼夜生理,包括OOAC系统。在这些系统中整合昼夜节律钟将增强其准确概括人类昼夜生理的潜力,从而增强其作为药物测试平台和人类(病理)生理现实模型的预测价值。补充资料:在线版本包含补充资料,提供地址:10.1007/s44164-022-00032-x。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Endothelial and smooth muscle cell interaction with hydrothermally treated titanium surfaces Scaffold-free development of multicellular tumor spheroids with spatial characterization of structure and metabolic radial profiles Advancing diagnostics and disease modeling: current concepts in biofabrication of soft microfluidic systems Mechanical scratch injury on differentiated motor neuron of NSC-34 cells as an in vitro model for evaluation of neuroregeneration potential of NeuroAiD II (MLC901) Modelling neurodegeneration and inflammation in early diabetic retinopathy using 3D human retinal organoids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1