Capacity analysis of aerial small cells

Akarsh Pokkunuru, Qin Zhang, Pu Wang
{"title":"Capacity analysis of aerial small cells","authors":"Akarsh Pokkunuru, Qin Zhang, Pu Wang","doi":"10.1109/ICC.2017.7997232","DOIUrl":null,"url":null,"abstract":"Providing high-speed communication for mobile users in remote geographic areas or after a disaster occurs is not only critical but also challenging. To counter such challenge, unmanned aerial vehicles (UAVs) have been exploited to provide a fast-deployable and high-speed communication system, where each UAV can serve as an aerial small cell base station to provide WiFi and/or cellular services for the ground users. Despite its fast-deployable and highly maneuverable features, the capacity analysis of aerial small cells is largely missing. To close such gap, a stochastic propagation model for A-to-G aerial channels is first introduced, which takes into account the impact from wave propagation, gaseous absorption, Doppler spread, attitude-dependent shadowing, and multipath fading. Then, by exploiting such model, the area spectral efficiency of the aerial small cells is investigated for both SISO and MIMO cases. Our study reveals the inherent relationship among the area capacity, height and coverage and shows that there exists an optimal attitude that can maximize network capacity and cell coverage.","PeriodicalId":6517,"journal":{"name":"2017 IEEE International Conference on Communications (ICC)","volume":"39 5","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2017.7997232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Providing high-speed communication for mobile users in remote geographic areas or after a disaster occurs is not only critical but also challenging. To counter such challenge, unmanned aerial vehicles (UAVs) have been exploited to provide a fast-deployable and high-speed communication system, where each UAV can serve as an aerial small cell base station to provide WiFi and/or cellular services for the ground users. Despite its fast-deployable and highly maneuverable features, the capacity analysis of aerial small cells is largely missing. To close such gap, a stochastic propagation model for A-to-G aerial channels is first introduced, which takes into account the impact from wave propagation, gaseous absorption, Doppler spread, attitude-dependent shadowing, and multipath fading. Then, by exploiting such model, the area spectral efficiency of the aerial small cells is investigated for both SISO and MIMO cases. Our study reveals the inherent relationship among the area capacity, height and coverage and shows that there exists an optimal attitude that can maximize network capacity and cell coverage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空中小基站容量分析
为偏远地区或灾害发生后的移动用户提供高速通信不仅至关重要,而且具有挑战性。为了应对这样的挑战,无人机(UAV)已经被用来提供快速部署和高速通信系统,其中每架无人机可以作为空中小型蜂窝基站为地面用户提供WiFi和/或蜂窝服务。尽管具有快速部署和高机动性的特点,但空中小型单元的能力分析在很大程度上是缺失的。为了缩小这种差距,首先引入了a - To - g航空信道的随机传播模型,该模型考虑了波传播、气体吸收、多普勒传播、姿态相关阴影和多径衰落的影响。然后,利用该模型,研究了空中小小区在SISO和MIMO两种情况下的面积频谱效率。我们的研究揭示了面积容量、高度和覆盖之间的内在关系,并表明存在一种使网络容量和小区覆盖最大化的最优态度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic control of NFV forwarding graphs with end-to-end deadline constraints New sensing technique for detecting application layer DDoS attacks targeting back-end database resources Using the pattern-of-life in networks to improve the effectiveness of intrusion detection systems On the two time scale characteristics of wireless high speed railway networks Secrecy outage analysis of buffer-aided multi-antenna relay systems without eavesdropper's CSI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1