High-resolution enhanced product based on SMAP active-passive approach using Sentinel 1 data and its applications

N. Das, D. Entekhabi, Seungbum Kim, T. Jagdhuber, R. Dunbar, S. Yueh, A. Colliander
{"title":"High-resolution enhanced product based on SMAP active-passive approach using Sentinel 1 data and its applications","authors":"N. Das, D. Entekhabi, Seungbum Kim, T. Jagdhuber, R. Dunbar, S. Yueh, A. Colliander","doi":"10.1109/IGARSS.2017.8127500","DOIUrl":null,"url":null,"abstract":"SMAP project is working on a new and enhanced high-resolution (3km and 1km) soil moisture product. This product will combine SMAP radiometer data and Sentinel-1A and -1B data, and it will use the heritage SMAP active-passive approach. However, modifications in the SMAP active-passive algorithm are done to accommodate the Sentinel-1A and -1B C-band SAR data. Tests of the SMAP and Sentinel active-passive algorithm has been conducted and results show great promise for the high-resolution soil moisture data. The beta version of this product will be released to public in end of the March, 2017. This high-resolution (1 km and 3 km) soil moisture product will be useful for agriculture, flooding, watershed and rangeland management, and ecological and hydrological applications. Specific examples of interest will be shown from the proposed product for the above mention geophysical applications.","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"247 3‐9","pages":"2493-2494"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2017.8127500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

SMAP project is working on a new and enhanced high-resolution (3km and 1km) soil moisture product. This product will combine SMAP radiometer data and Sentinel-1A and -1B data, and it will use the heritage SMAP active-passive approach. However, modifications in the SMAP active-passive algorithm are done to accommodate the Sentinel-1A and -1B C-band SAR data. Tests of the SMAP and Sentinel active-passive algorithm has been conducted and results show great promise for the high-resolution soil moisture data. The beta version of this product will be released to public in end of the March, 2017. This high-resolution (1 km and 3 km) soil moisture product will be useful for agriculture, flooding, watershed and rangeland management, and ecological and hydrological applications. Specific examples of interest will be shown from the proposed product for the above mention geophysical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Sentinel 1数据的SMAP主-被动方法的高分辨率增强产品及其应用
SMAP项目正在研究一种新的和增强的高分辨率(3公里和1公里)土壤湿度产品。该产品将结合SMAP辐射计数据和Sentinel-1A和-1B数据,并将使用传统的SMAP主-被动方法。然而,为了适应Sentinel-1A和-1B c波段SAR数据,对SMAP主-被动算法进行了修改。对SMAP和Sentinel主-被动算法进行了试验,结果表明SMAP和Sentinel主-被动算法对高分辨率土壤湿度数据具有很大的应用前景。该产品的测试版将于2017年3月底向公众发布。这种高分辨率(1公里和3公里)的土壤湿度产品将对农业、洪水、流域和牧场管理以及生态和水文应用有用。将从提议的产品中展示上述地球物理应用的具体示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ongoing Progress Toward NASA's Surface Biology and Geology Mission Sea Surface Salinity Dynamics in the Bohai Sea Using MODIS Data Water Surface Level Monitoring of the Axios River Wetlands, Greece, Using Airborne and Space-Borne Earth Observation Data Selection of the 3-D Shearlet Cubes for Improving Hyperspectral Image Joint Sparse Classification A New Method for Determining Rain Flag of the Sentinel-3 Altimeter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1