Strain tunable pudding-mold-type band structure and thermoelectric properties of SnP3 monolayer

Shasha Wei, Cong Wang, S. Fan, G. Gao
{"title":"Strain tunable pudding-mold-type band structure and thermoelectric properties of SnP3 monolayer","authors":"Shasha Wei, Cong Wang, S. Fan, G. Gao","doi":"10.1063/5.0003241","DOIUrl":null,"url":null,"abstract":"Recent studies indicated the interesting metal-to-semiconductor transition when layered bulk GeP3 and SnP3 are restricted to the monolayer or bilayer, and SnP3 monolayer has been predicted to possess high carrier mobility and promising thermoelectric performance. Here, we investigate the biaxial strain effect on the electronic and thermoelectric properties of SnP3 monolayer. Our first-principles calculations combined with Boltzmann transport theory indicate that SnP3 monolayer has the pudding-mold-type valence band structure, giving rise to a large p-type Seebeck coefficient and a high p-type power factor. The compressive biaxial strain can decrease the energy gap and result in the metallicity. In contrast, the tensile biaxial strain increases the energy gap, and increases the n-type Seebeck coefficient and decreases the n-type electrical conductivity. Although the lattice thermal conductivity becomes larger at a tensile biaxial strain due to the increased maximum frequency of the acoustic phonon modes and the increased phonon group velocity, it is still low, only e.g. 3.1 W/(mK) at room temperature with the 6% tensile biaxial strain. Therefore, SnP3 monolayer is a good thermoelectric material with low lattice thermal conductivity even at the 6% tensile strain, and the tensile strain is beneficial to the increase of the n-type Seebeck coefficient.","PeriodicalId":8424,"journal":{"name":"arXiv: Computational Physics","volume":"160 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0003241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Recent studies indicated the interesting metal-to-semiconductor transition when layered bulk GeP3 and SnP3 are restricted to the monolayer or bilayer, and SnP3 monolayer has been predicted to possess high carrier mobility and promising thermoelectric performance. Here, we investigate the biaxial strain effect on the electronic and thermoelectric properties of SnP3 monolayer. Our first-principles calculations combined with Boltzmann transport theory indicate that SnP3 monolayer has the pudding-mold-type valence band structure, giving rise to a large p-type Seebeck coefficient and a high p-type power factor. The compressive biaxial strain can decrease the energy gap and result in the metallicity. In contrast, the tensile biaxial strain increases the energy gap, and increases the n-type Seebeck coefficient and decreases the n-type electrical conductivity. Although the lattice thermal conductivity becomes larger at a tensile biaxial strain due to the increased maximum frequency of the acoustic phonon modes and the increased phonon group velocity, it is still low, only e.g. 3.1 W/(mK) at room temperature with the 6% tensile biaxial strain. Therefore, SnP3 monolayer is a good thermoelectric material with low lattice thermal conductivity even at the 6% tensile strain, and the tensile strain is beneficial to the increase of the n-type Seebeck coefficient.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应变可调布丁型SnP3单层带结构及热电性能
最近的研究表明,当层状体GeP3和SnP3仅限于单层或双层时,金属到半导体的转变很有趣,并且单层SnP3被预测具有高载流子迁移率和有前途的热电性能。本文研究了双轴应变对SnP3单层电子和热电性能的影响。我们的第一性原理计算结合玻尔兹曼输运理论表明,SnP3单层具有布丁霉型价带结构,具有较大的p型塞贝克系数和较高的p型功率因数。压缩双轴应变可以减小能隙,提高金属丰度。而拉伸双轴应变增大了能隙,增大了n型塞贝克系数,降低了n型电导率。虽然在拉伸双轴应变下,由于声子模式的最大频率增加和声子群速度增加,晶格导热系数增大,但仍然很低,在室温下,在6%的拉伸双轴应变下,晶格导热系数仅为3.1 W/(mK)。因此,即使在6%的拉伸应变下,SnP3单层也具有较低的晶格导热系数,是一种良好的热电材料,且拉伸应变有利于n型塞贝克系数的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling and computation for non-equilibrium gas dynamics: Beyond single relaxation time kinetic models Space-time computation and visualization of the electromagnetic fields and potentials generated by moving point charges Sparse Gaussian process potentials: Application to lithium diffusivity in superionic conducting solid electrolytes Reduced ionic diffusion by the dynamic electron–ion collisions in warm dense hydrogen HL-LHC Computing Review: Common Tools and Community Software
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1