A Permeability Evolution Model of Double-Porosity Media with Consideration of Temperature and Pressure Variations

Yi Zhang, Gao Li, Guangchun Leng, Keda Wang, Rui Wang, P. Li
{"title":"A Permeability Evolution Model of Double-Porosity Media with Consideration of Temperature and Pressure Variations","authors":"Yi Zhang, Gao Li, Guangchun Leng, Keda Wang, Rui Wang, P. Li","doi":"10.4043/31646-ms","DOIUrl":null,"url":null,"abstract":"\n Reservoir heat treatment (RHT) can improve rock seepage capacity. Recently, it has been considered as a potential technology to enhance unconventional oil and gas recovery. This work presents a permeability evolution model to describe the thermal cracking effects of double-porosity media under temperature change and certain formation pressure. Moreover, to verify the accuracy of the model, a typical double-porosity media (tight sandstone) is selected as the sample, and the permeability of the sample is tested using a simulated formation heating device. Firstly, according to the observation results under SEM, 400°C is regarded as the transition temperature of porous and fractured media. The two-parameter exponential function and the improved \"cubic law\" are used to characterize the permeability of the pore part and the fracture part respectively. Secondly, rock is comprised of matrix grains and pore space. In the model hypothesis, the volume of the matrix grains is just a function of temperature, and the pore space is compressed or released under the action of effective stress, considering the difference of deformation between the matrix grains and the pore space, the Hooke's law based on engineering strain and natural strain is adopted for them respectively. Thirdly, the influence of temperature on crack spacing and opening is analyzed based on the energy principle and Weibull distribution. Finally, a permeability evolution model is established for the whole process of thermal expansion and cracking. The model describes two phases. In the first phase, the matrix grains expand under confining pressure, and at the same time accumulate thermal stress. In the second phase, after the thermal stress overcomes the confining pressure, the porosity recovers and cracks are gradually damaged and formed. The interaction between thermal stress and confining pressure is controlled by introducing a modulation factor. Due to the difference of component properties, the rock has obvious non-uniform thermal fracture phenomenon. Therefore, in this model, three parameters are introduced to ensure the robustness of the model: the contribution of deformation behavior of the matrix grains and pore space to crack opening, the influence of effective stress on crack opening, and the crack proportion of effective seepage. The results indicate that the model can describe the permeability evolution behavior of double-porosity media under certain confining pressure and temperature changes, it provides theoretical guidance for RHT to enhance oil and gas recovery.","PeriodicalId":11011,"journal":{"name":"Day 3 Thu, March 24, 2022","volume":"41 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, March 24, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/31646-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reservoir heat treatment (RHT) can improve rock seepage capacity. Recently, it has been considered as a potential technology to enhance unconventional oil and gas recovery. This work presents a permeability evolution model to describe the thermal cracking effects of double-porosity media under temperature change and certain formation pressure. Moreover, to verify the accuracy of the model, a typical double-porosity media (tight sandstone) is selected as the sample, and the permeability of the sample is tested using a simulated formation heating device. Firstly, according to the observation results under SEM, 400°C is regarded as the transition temperature of porous and fractured media. The two-parameter exponential function and the improved "cubic law" are used to characterize the permeability of the pore part and the fracture part respectively. Secondly, rock is comprised of matrix grains and pore space. In the model hypothesis, the volume of the matrix grains is just a function of temperature, and the pore space is compressed or released under the action of effective stress, considering the difference of deformation between the matrix grains and the pore space, the Hooke's law based on engineering strain and natural strain is adopted for them respectively. Thirdly, the influence of temperature on crack spacing and opening is analyzed based on the energy principle and Weibull distribution. Finally, a permeability evolution model is established for the whole process of thermal expansion and cracking. The model describes two phases. In the first phase, the matrix grains expand under confining pressure, and at the same time accumulate thermal stress. In the second phase, after the thermal stress overcomes the confining pressure, the porosity recovers and cracks are gradually damaged and formed. The interaction between thermal stress and confining pressure is controlled by introducing a modulation factor. Due to the difference of component properties, the rock has obvious non-uniform thermal fracture phenomenon. Therefore, in this model, three parameters are introduced to ensure the robustness of the model: the contribution of deformation behavior of the matrix grains and pore space to crack opening, the influence of effective stress on crack opening, and the crack proportion of effective seepage. The results indicate that the model can describe the permeability evolution behavior of double-porosity media under certain confining pressure and temperature changes, it provides theoretical guidance for RHT to enhance oil and gas recovery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑温度和压力变化的双孔介质渗透率演化模型
储层热处理可以提高岩石的渗流能力。最近,它被认为是一种提高非常规油气采收率的潜在技术。提出了一种描述温度变化和一定地层压力下双重孔隙介质热裂解效应的渗透率演化模型。为验证模型的准确性,选取典型双孔隙介质(致密砂岩)作为试样,利用模拟地层加热装置对试样进行渗透率测试。首先,根据SEM的观察结果,将400℃作为多孔裂隙介质的转变温度。采用双参数指数函数和改进的“三次定律”分别表征孔隙部分和裂缝部分的渗透率。其次,岩石由基质颗粒和孔隙空间组成。在模型假设中,基体晶粒体积只是温度的函数,孔隙空间在有效应力作用下被压缩或释放,考虑到基体晶粒与孔隙空间变形的差异,分别采用基于工程应变和自然应变的胡克定律。第三,基于能量原理和威布尔分布,分析了温度对裂纹间距和开度的影响。最后,建立了热膨胀开裂全过程的渗透率演化模型。该模型描述了两个阶段。在第一阶段,基体晶粒在围压作用下膨胀,同时积累热应力。第二阶段,热应力克服围压后,孔隙度恢复,裂缝逐渐破坏形成。通过引入调节因子控制热应力与围压之间的相互作用。由于组分性质的差异,岩石存在明显的不均匀热破裂现象。因此,在该模型中,为了保证模型的鲁棒性,引入了三个参数:基质颗粒的变形行为和孔隙空间对裂缝张开的贡献,有效应力对裂缝张开的影响,以及有效渗流的裂缝比例。结果表明,该模型能较好地描述双孔介质在一定围压和温度变化下的渗透率演化规律,为RHT提高油气采收率提供理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrated Advance Petrophysical Evaluation for Heterolithic Clastics Reservoir Characterization Optimization in Malay Basin The Transformation Journey and Key Critical Success Factors of Turbomachinery Digital Remote Monitoring Biggest Wells Plug and Abandonment Campaign – Effective Management & Best Practices Implementation Zawtika Deferment Management Enhancement: A Systematic Way to Unlock Gas Potential for Optimized Operations Breakthrough Integration of 3-1/2? Tubing in 8-1/2? Hole Cemented Monobore for Successful Tubing Stem Test TST
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1