{"title":"Iterative Alignment Network for Continuous Sign Language Recognition","authors":"Junfu Pu, Wen-gang Zhou, Houqiang Li","doi":"10.1109/CVPR.2019.00429","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an alignment network with iterative optimization for weakly supervised continuous sign language recognition. Our framework consists of two modules: a 3D convolutional residual network (3D-ResNet) for feature learning and an encoder-decoder network with connectionist temporal classification (CTC) for sequence modelling. The above two modules are optimized in an alternate way. In the encoder-decoder sequence learning network, two decoders are included, i.e., LSTM decoder and CTC decoder. Both decoders are jointly trained by maximum likelihood criterion with a soft Dynamic Time Warping (soft-DTW) alignment constraint. The warping path, which indicates the possible alignment between input video clips and sign words, is used to fine-tune the 3D-ResNet as training labels with classification loss. After fine-tuning, the improved features are extracted for optimization of encoder-decoder sequence learning network in next iteration. The proposed algorithm is evaluated on two large scale continuous sign language recognition benchmarks, i.e., RWTH-PHOENIX-Weather and CSL. Experimental results demonstrate the effectiveness of our proposed method.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"684 1","pages":"4160-4169"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"140","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 140
Abstract
In this paper, we propose an alignment network with iterative optimization for weakly supervised continuous sign language recognition. Our framework consists of two modules: a 3D convolutional residual network (3D-ResNet) for feature learning and an encoder-decoder network with connectionist temporal classification (CTC) for sequence modelling. The above two modules are optimized in an alternate way. In the encoder-decoder sequence learning network, two decoders are included, i.e., LSTM decoder and CTC decoder. Both decoders are jointly trained by maximum likelihood criterion with a soft Dynamic Time Warping (soft-DTW) alignment constraint. The warping path, which indicates the possible alignment between input video clips and sign words, is used to fine-tune the 3D-ResNet as training labels with classification loss. After fine-tuning, the improved features are extracted for optimization of encoder-decoder sequence learning network in next iteration. The proposed algorithm is evaluated on two large scale continuous sign language recognition benchmarks, i.e., RWTH-PHOENIX-Weather and CSL. Experimental results demonstrate the effectiveness of our proposed method.