Evaluation of Dimensional Reduction Methods on Urban Vegegation Classification Performance Using Hyperspectral Data

Charlotte Brabant, Emilien Alvarez-Vanhard, Gwénaël Morin, Kim Thanh Nguyen, Achour Laribi, T. Houet
{"title":"Evaluation of Dimensional Reduction Methods on Urban Vegegation Classification Performance Using Hyperspectral Data","authors":"Charlotte Brabant, Emilien Alvarez-Vanhard, Gwénaël Morin, Kim Thanh Nguyen, Achour Laribi, T. Houet","doi":"10.1109/IGARSS.2018.8517410","DOIUrl":null,"url":null,"abstract":"In the context of urban vegetation, hyperspectral imagery allows to discriminate biochemical properties of land surfaces. In this study, we test several dimension reductions to evaluate capacities of hyperspectral sensors to characterize tree families. The goal is to evaluate if a selection of differentiated and uncorrelated vegetation indices is an efficient method to reduce the dimension of hyperspectral images. This method is compared with conventional MNF and ACP approaches, and assessed on tree vegetation classifications performed using SVM classifier on two datasets at 4m and 8m spatial resolution. Results show that MNF combined with SVM classification is the better method to reduce hyperspectral dimension.","PeriodicalId":6466,"journal":{"name":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"213 ","pages":"1636-1639"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2018.8517410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In the context of urban vegetation, hyperspectral imagery allows to discriminate biochemical properties of land surfaces. In this study, we test several dimension reductions to evaluate capacities of hyperspectral sensors to characterize tree families. The goal is to evaluate if a selection of differentiated and uncorrelated vegetation indices is an efficient method to reduce the dimension of hyperspectral images. This method is compared with conventional MNF and ACP approaches, and assessed on tree vegetation classifications performed using SVM classifier on two datasets at 4m and 8m spatial resolution. Results show that MNF combined with SVM classification is the better method to reduce hyperspectral dimension.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高光谱数据的城市植被分类降维方法评价
在城市植被的背景下,高光谱图像可以区分地表的生化特性。在本研究中,我们测试了几种降维来评估高光谱传感器表征树系的能力。目的是评估选择差异化和不相关的植被指数是否是一种有效的方法来降低高光谱图像的维数。将该方法与传统的MNF和ACP方法进行了比较,并对SVM分类器在4m和8m空间分辨率下进行的树木植被分类进行了评估。结果表明,MNF与SVM分类相结合是降低高光谱维数的较好方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ongoing Progress Toward NASA's Surface Biology and Geology Mission Sea Surface Salinity Dynamics in the Bohai Sea Using MODIS Data Water Surface Level Monitoring of the Axios River Wetlands, Greece, Using Airborne and Space-Borne Earth Observation Data Selection of the 3-D Shearlet Cubes for Improving Hyperspectral Image Joint Sparse Classification A New Method for Determining Rain Flag of the Sentinel-3 Altimeter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1