Segmentation and classification of melanocytic skin lesions using local and contextual features

Eliezer Bernart, J. Scharcanski, S. Bampi
{"title":"Segmentation and classification of melanocytic skin lesions using local and contextual features","authors":"Eliezer Bernart, J. Scharcanski, S. Bampi","doi":"10.1109/ICIP.2016.7532836","DOIUrl":null,"url":null,"abstract":"This work presents a novel approach for detecting and classifying melanocytic skin lesions on macroscopic images. We oversegment the skin lesions using superpixels, and classify independently each superpixel as a benign or malignant using local and contextual information. The overall superpixel classification results allow to calculate an index of malignancy or benignity for the skin lesion. Using the proposed approach it is possible to discriminate a malignant from a benign skin lesion by recognizing early signs of malignancy in parts of the segmented skin lesion. The experimental results are promising, and show a potential accuracy of 99.34% on a popular data set, outperforming the current state-of-art methods.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"19 16","pages":"2633-2637"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7532836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This work presents a novel approach for detecting and classifying melanocytic skin lesions on macroscopic images. We oversegment the skin lesions using superpixels, and classify independently each superpixel as a benign or malignant using local and contextual information. The overall superpixel classification results allow to calculate an index of malignancy or benignity for the skin lesion. Using the proposed approach it is possible to discriminate a malignant from a benign skin lesion by recognizing early signs of malignancy in parts of the segmented skin lesion. The experimental results are promising, and show a potential accuracy of 99.34% on a popular data set, outperforming the current state-of-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用局部和上下文特征的黑素细胞性皮肤病变的分割和分类
这项工作提出了一种新的方法来检测和分类黑素细胞皮肤病变的宏观图像。我们使用超像素对皮肤病变进行过分割,并使用局部和上下文信息独立地将每个超像素分类为良性或恶性。总体超像素分类结果允许计算恶性或良性皮肤病变的指数。使用所提出的方法,可以通过识别部分分段皮肤病变的早期恶性体征来区分恶性皮肤病变和良性皮肤病变。实验结果很有希望,在一个流行的数据集上显示出99.34%的潜在准确率,优于目前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content-adaptive pyramid representation for 3D object classification Automating the measurement of physiological parameters: A case study in the image analysis of cilia motion Horizon based orientation estimation for planetary surface navigation Softcast with per-carrier power-constrained channels Speeding-up a convolutional neural network by connecting an SVM network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1