A Hashing-Based Framework for Enhancing Cluster Delineation of High-Dimensional Single-Cell Profiles.

IF 3.7 Q2 GENETICS & HEREDITY Phenomics (Cham, Switzerland) Pub Date : 2022-05-19 eCollection Date: 2022-10-01 DOI:10.1007/s43657-022-00056-z
Xiao Liu, Ting Zhang, Ziyang Tan, Antony R Warden, Shanhe Li, Edwin Cheung, Xianting Ding
{"title":"A Hashing-Based Framework for Enhancing Cluster Delineation of High-Dimensional Single-Cell Profiles.","authors":"Xiao Liu,&nbsp;Ting Zhang,&nbsp;Ziyang Tan,&nbsp;Antony R Warden,&nbsp;Shanhe Li,&nbsp;Edwin Cheung,&nbsp;Xianting Ding","doi":"10.1007/s43657-022-00056-z","DOIUrl":null,"url":null,"abstract":"<p><p>Although many methods have been developed to explore the function of cells by clustering high-dimensional (HD) single-cell omics data, the inconspicuously differential expressions of biomarkers of proteins or genes across all cells disturb the cell cluster delineation and downstream analysis. Here, we introduce a hashing-based framework to improve the delineation of cell clusters, which is based on the hypothesis that one variable with no significant differences can be decomposed into more diversely latent variables to distinguish cells. By projecting the original data into a sparse HD space, fly and densefly hashing preprocessing retain the local structure of data, and improve the cluster delineation of existing clustering methods, such as PhenoGraph. Moreover, the analyses on mass cytometry dataset show that our hashing-based framework manages to unveil new hidden heterogeneities in cell clusters. The proposed framework promotes the utilization of cell biomarkers and enriches the biological findings by introducing more latent variables.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s43657-022-00056-z.</p>","PeriodicalId":74435,"journal":{"name":"Phenomics (Cham, Switzerland)","volume":"2 5","pages":"323-335"},"PeriodicalIF":3.7000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9590516/pdf/43657_2022_Article_56.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phenomics (Cham, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43657-022-00056-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 2

Abstract

Although many methods have been developed to explore the function of cells by clustering high-dimensional (HD) single-cell omics data, the inconspicuously differential expressions of biomarkers of proteins or genes across all cells disturb the cell cluster delineation and downstream analysis. Here, we introduce a hashing-based framework to improve the delineation of cell clusters, which is based on the hypothesis that one variable with no significant differences can be decomposed into more diversely latent variables to distinguish cells. By projecting the original data into a sparse HD space, fly and densefly hashing preprocessing retain the local structure of data, and improve the cluster delineation of existing clustering methods, such as PhenoGraph. Moreover, the analyses on mass cytometry dataset show that our hashing-based framework manages to unveil new hidden heterogeneities in cell clusters. The proposed framework promotes the utilization of cell biomarkers and enriches the biological findings by introducing more latent variables.

Supplementary information: The online version contains supplementary material available at 10.1007/s43657-022-00056-z.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于哈希的框架,用于增强高维单细胞轮廓的聚类描绘。
尽管已经开发了许多方法来通过聚类高维(HD)单细胞组学数据来探索细胞的功能,但所有细胞中蛋白质或基因的生物标志物的不明显差异表达干扰了细胞聚类的描绘和下游分析。在这里,我们引入了一个基于哈希的框架来改进细胞簇的描绘,该框架基于这样的假设,即一个没有显著差异的变量可以分解为更多样的潜在变量来区分细胞。通过将原始数据投影到稀疏HD空间中,fly和densefly哈希预处理保留了数据的局部结构,并改进了现有聚类方法(如PhenoGraph)的聚类描绘。此外,对质谱数据集的分析表明,我们基于哈希的框架成功地揭示了细胞簇中新的隐藏异质性。所提出的框架通过引入更多的潜在变量来促进细胞生物标志物的利用,并丰富生物学发现。补充信息:在线版本包含补充材料,可访问10.1007/s43657-022-00056-z。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation on Phenomics of Traditional Chinese Medicine from the Diabetes. Expert Consensus on Big Data Collection of Skin and Appendage Disease Phenotypes in Chinese. Synergistically Augmenting Cancer Immunotherapy by Physical Manipulation of Pyroptosis Induction. Report on the 4th Board Meeting of the International Human Phenome Consortium. A Noninvasive Approach to Evaluate Tumor Immune Microenvironment and Predict Outcomes in Hepatocellular Carcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1