Application of deep learning to understanding ENSO dynamics

Na-Yeon Shin, Y. Ham, Jeong-Hwan Kim, M. Cho, J. Kug
{"title":"Application of deep learning to understanding ENSO dynamics","authors":"Na-Yeon Shin, Y. Ham, Jeong-Hwan Kim, M. Cho, J. Kug","doi":"10.1175/aies-d-21-0011.1","DOIUrl":null,"url":null,"abstract":"\nMany deep learning technologies have been applied to the Earth sciences. Nonetheless, the difficulty in interpreting deep learning results still prevents their applications to studies on climate dynamics. Here, we applied a convolutional neural network to understand El Niño–Southern Oscillation (ENSO) dynamics from long-term climate model simulations. The deep learning algorithm successfully predicted ENSO events with a high correlation skill (∼0.82) for a 9-month lead. For interpreting deep learning results beyond the prediction, we present a “contribution map” to estimate how much the grid box and variable contribute to the output and “contribution sensitivity” to estimate how much the output variable is changed to the small perturbation of the input variables. The contribution map and sensitivity are calculated by modifying the input variables to the pre-trained deep learning, which is quite similar to the occlusion sensitivity. Based on the two methods, we identified three precursors of ENSO and investigated their physical processes with El Niño and La Niña development. In particular, it is suggested here that the roles of each precursor are asymmetric between El Niño and La Niña. Our results suggest that the contribution map and sensitivity are simple approaches but can be a powerful tool in understanding ENSO dynamics and they might be also applied to other climate phenomena.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"122 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/aies-d-21-0011.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Many deep learning technologies have been applied to the Earth sciences. Nonetheless, the difficulty in interpreting deep learning results still prevents their applications to studies on climate dynamics. Here, we applied a convolutional neural network to understand El Niño–Southern Oscillation (ENSO) dynamics from long-term climate model simulations. The deep learning algorithm successfully predicted ENSO events with a high correlation skill (∼0.82) for a 9-month lead. For interpreting deep learning results beyond the prediction, we present a “contribution map” to estimate how much the grid box and variable contribute to the output and “contribution sensitivity” to estimate how much the output variable is changed to the small perturbation of the input variables. The contribution map and sensitivity are calculated by modifying the input variables to the pre-trained deep learning, which is quite similar to the occlusion sensitivity. Based on the two methods, we identified three precursors of ENSO and investigated their physical processes with El Niño and La Niña development. In particular, it is suggested here that the roles of each precursor are asymmetric between El Niño and La Niña. Our results suggest that the contribution map and sensitivity are simple approaches but can be a powerful tool in understanding ENSO dynamics and they might be also applied to other climate phenomena.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用深度学习来理解ENSO动力学
许多深度学习技术已经应用于地球科学。尽管如此,解释深度学习结果的困难仍然阻碍了它们在气候动力学研究中的应用。在这里,我们应用卷积神经网络从长期气候模式模拟中理解El Niño-Southern振荡(ENSO)动力学。深度学习算法以高相关技能(~ 0.82)成功预测ENSO事件,领先9个月。为了解释预测之外的深度学习结果,我们提出了一个“贡献图”来估计网格框和变量对输出的贡献程度,以及“贡献灵敏度”来估计输出变量被输入变量的小扰动改变的程度。通过修改预训练深度学习的输入变量来计算贡献图和灵敏度,这与遮挡灵敏度非常相似。基于这两种方法,我们确定了三种ENSO前体,并通过El Niño和La Niña的发育研究了它们的物理过程。特别指出的是,在El Niño和La Niña之间,每个前驱体的作用是不对称的。我们的研究结果表明,贡献图和敏感性是一种简单的方法,但可以成为理解ENSO动力学的有力工具,它们也可以应用于其他气候现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transferability and explainability of deep learning emulators for regional climate model projections: Perspectives for future applications Classification of ice particle shapes using machine learning on forward light scattering images Convolutional encoding and normalizing flows: a deep learning approach for offshore wind speed probabilistic forecasting in the Mediterranean Sea Neural networks to find the optimal forcing for offsetting the anthropogenic climate change effects Machine Learning Approach for Spatiotemporal Multivariate Optimization of Environmental Monitoring Sensor Locations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1