Exploiting the scaling indetermination of bi-linear models in inverse problems

S. Thé, É. Thiébaut, L. Denis, F. Soulez
{"title":"Exploiting the scaling indetermination of bi-linear models in inverse problems","authors":"S. Thé, É. Thiébaut, L. Denis, F. Soulez","doi":"10.23919/Eusipco47968.2020.9287593","DOIUrl":null,"url":null,"abstract":"Many inverse problems in imaging require estimating the parameters of a bi-linear model, e.g., the crisp image and the blur in blind deconvolution. In all these models, there is a scaling indetermination: multiplication of one term by an arbitrary factor can be compensated for by dividing the other by the same factor.To solve such inverse problems and identify each term of the bi-linear model, reconstruction methods rely on prior models that enforce some form of regularity. If these regularization terms verify a homogeneity property, the optimal scaling with respect to the regularization functions can be determined. This has two benefits: hyper-parameter tuning is simplified (a single parameter needs to be chosen) and the computation of the maximum a posteriori estimate is more efficient.Illustrations on a blind deconvolution problem are given with an unsupervised strategy to tune the hyper-parameter.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"56 7","pages":"2358-2362"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many inverse problems in imaging require estimating the parameters of a bi-linear model, e.g., the crisp image and the blur in blind deconvolution. In all these models, there is a scaling indetermination: multiplication of one term by an arbitrary factor can be compensated for by dividing the other by the same factor.To solve such inverse problems and identify each term of the bi-linear model, reconstruction methods rely on prior models that enforce some form of regularity. If these regularization terms verify a homogeneity property, the optimal scaling with respect to the regularization functions can be determined. This has two benefits: hyper-parameter tuning is simplified (a single parameter needs to be chosen) and the computation of the maximum a posteriori estimate is more efficient.Illustrations on a blind deconvolution problem are given with an unsupervised strategy to tune the hyper-parameter.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用反问题中双线性模型的尺度不确定性
成像中的许多反问题都需要估计双线性模型的参数,如图像的清晰性和盲目反卷积中的模糊性。在所有这些模型中,都存在缩放不确定性:一个项乘以任意因子可以通过将另一个项除以相同因子来补偿。为了解决此类逆问题并识别双线性模型的每个项,重建方法依赖于强制某种形式的规律性的先前模型。如果这些正则化项验证了同质性,则可以确定正则化函数的最优缩放。这有两个好处:简化了超参数调优(需要选择单个参数),最大后验估计的计算更有效。给出了一个用无监督策略调整超参数的盲反卷积问题的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Eusipco 2021 Cover Page A graph-theoretic sensor-selection scheme for covariance-based Motor Imagery (MI) decoding Hidden Markov Model Based Data-driven Calibration of Non-dispersive Infrared Gas Sensor Deep Transform Learning for Multi-Sensor Fusion Two Stages Parallel LMS Structure: A Pipelined Hardware Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1