Role of boundary conditions in quantum computations of scattering observables

R. Briceño, J. V. Guerrero, M. Hansen, A. Sturzu
{"title":"Role of boundary conditions in quantum computations of scattering observables","authors":"R. Briceño, J. V. Guerrero, M. Hansen, A. Sturzu","doi":"10.1103/physrevd.103.014506","DOIUrl":null,"url":null,"abstract":"Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution. This would give access to Minkowski-signature correlators, in contrast to the Euclidean calculations routinely performed at present. However, as with present-day calculations, quantum computation strategies still require the restriction to a finite system size, including a finite, usually periodic, spatial volume. In this work, we investigate the consequences of this in the extraction of hadronic and Compton-like scattering amplitudes. Using the framework presented in Phys. Rev. D101 014509 (2020), we quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty, even for volumes that are very large by the standards of present-day Euclidean calculations. We then present an improvement strategy, based in the fact that the finite volume has a reduced symmetry. This implies that kinematic points, which yield the same Lorentz invariants, may still be physically distinct in the finite-volume system. As we demonstrate, both numerically and analytically, averaging over such sets can significantly suppress the unwanted volume distortions and improve the extraction of the physical scattering amplitudes.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":"126 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevd.103.014506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution. This would give access to Minkowski-signature correlators, in contrast to the Euclidean calculations routinely performed at present. However, as with present-day calculations, quantum computation strategies still require the restriction to a finite system size, including a finite, usually periodic, spatial volume. In this work, we investigate the consequences of this in the extraction of hadronic and Compton-like scattering amplitudes. Using the framework presented in Phys. Rev. D101 014509 (2020), we quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty, even for volumes that are very large by the standards of present-day Euclidean calculations. We then present an improvement strategy, based in the fact that the finite volume has a reduced symmetry. This implies that kinematic points, which yield the same Lorentz invariants, may still be physically distinct in the finite-volume system. As we demonstrate, both numerically and analytically, averaging over such sets can significantly suppress the unwanted volume distortions and improve the extraction of the physical scattering amplitudes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
边界条件在散射观测量量子计算中的作用
量子计算可能提供模拟强相互作用场论的机会,比如量子色动力学,以及物理时间演化。这将使人们能够使用闵可夫斯基特征相关器,而不是目前通常使用的欧几里得计算。然而,与当今的计算一样,量子计算策略仍然需要限制有限的系统大小,包括有限的,通常是周期性的空间体积。在这项工作中,我们在强子和康普顿散射振幅的提取中研究了这一结果。使用物理学中提出的框架。Rev. D101 014509(2020),我们量化了各种$1+1$D闵可夫斯基特征量的体积效应,并表明这些可能是系统不确定性的重要来源,即使对于按照当今欧几里得计算标准非常大的体积。然后,我们提出了一种改进策略,基于有限体积具有降低对称性的事实。这意味着产生相同洛伦兹不变量的运动点在有限体积系统中可能仍然是物理上不同的。正如我们所证明的,在数值和分析上,对这些集合进行平均可以显著抑制不必要的体积畸变,并改善物理散射振幅的提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Worldvolume approach to the tempered Lefschetz thimble method Excited J−− meson resonances at the SU(3) flavor point from lattice QCD New Abelian-like monopoles and the dual Meissner effect Relativistic three-particle quantization condition for nondegenerate scalars Study of the axial U(1) anomaly at high temperature with lattice chiral fermions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1