Anna Livia Croella, Veronica Dal Sasso, Leonardo Lamorgese, C. Mannino, P. Ventura
{"title":"Disruption Management in Railway Systems by Safe Place Assignment","authors":"Anna Livia Croella, Veronica Dal Sasso, Leonardo Lamorgese, C. Mannino, P. Ventura","doi":"10.1287/trsc.2021.1107","DOIUrl":null,"url":null,"abstract":"When major disruptions occur in a rail network, the infrastructure manager and train operating companies may be forced to stop trains until the normal status is recovered. A crucial aspect is to identify, for each train, a location (a safe place) where the train can hold during the disruption, avoiding to disconnect the network and allowing a quick recovering of the plan, at restart. We give necessary and sufficient conditions for a safe place assignment to have the desired property. We then translate such conditions into constraints of a suitable binary formulation of the problem. Computational results on a set of instances provided by a class 1 U.S. railroad show how the approach can be used effectively in the real-life setting that motivates the study, by returning optimal assignments in a fraction of a second.","PeriodicalId":23247,"journal":{"name":"Transp. Sci.","volume":"64 1","pages":"938-952"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transp. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/trsc.2021.1107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
When major disruptions occur in a rail network, the infrastructure manager and train operating companies may be forced to stop trains until the normal status is recovered. A crucial aspect is to identify, for each train, a location (a safe place) where the train can hold during the disruption, avoiding to disconnect the network and allowing a quick recovering of the plan, at restart. We give necessary and sufficient conditions for a safe place assignment to have the desired property. We then translate such conditions into constraints of a suitable binary formulation of the problem. Computational results on a set of instances provided by a class 1 U.S. railroad show how the approach can be used effectively in the real-life setting that motivates the study, by returning optimal assignments in a fraction of a second.