{"title":"Upper bounds for the maximum deviation of the Pearcey process","authors":"C. Charlier","doi":"10.1142/s2010326321500398","DOIUrl":null,"url":null,"abstract":"The Pearcey process is a universal point process in random matrix theory and depends on a parameter $\\rho \\in \\mathbb{R}$. Let $N(x)$ be the random variable that counts the number of points in this process that fall in the interval $[-x,x]$. In this note, we establish the following global rigidity upper bound: \\begin{align*} \\lim_{s \\to \\infty}\\mathbb P\\left(\\sup_{x> s}\\left|\\frac{N(x)-\\big( \\frac{3\\sqrt{3}}{4\\pi}x^{\\frac{4}{3}}-\\frac{\\sqrt{3}\\rho}{2\\pi}x^{\\frac{2}{3}} \\big)}{\\log x}\\right| \\leq \\frac{4\\sqrt{2}}{3\\pi} + \\epsilon \\right) = 1, \\end{align*} where $\\epsilon > 0$ is arbitrary. We also obtain a similar upper bound for the maximum deviation of the points, and a central limit theorem for the individual fluctuations. The proof is short and combines a recent result of Dai, Xu and Zhang with another result of Charlier and Claeys.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"14 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2010326321500398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The Pearcey process is a universal point process in random matrix theory and depends on a parameter $\rho \in \mathbb{R}$. Let $N(x)$ be the random variable that counts the number of points in this process that fall in the interval $[-x,x]$. In this note, we establish the following global rigidity upper bound: \begin{align*} \lim_{s \to \infty}\mathbb P\left(\sup_{x> s}\left|\frac{N(x)-\big( \frac{3\sqrt{3}}{4\pi}x^{\frac{4}{3}}-\frac{\sqrt{3}\rho}{2\pi}x^{\frac{2}{3}} \big)}{\log x}\right| \leq \frac{4\sqrt{2}}{3\pi} + \epsilon \right) = 1, \end{align*} where $\epsilon > 0$ is arbitrary. We also obtain a similar upper bound for the maximum deviation of the points, and a central limit theorem for the individual fluctuations. The proof is short and combines a recent result of Dai, Xu and Zhang with another result of Charlier and Claeys.