Introspective Agents in Opinion Formation Modeling to Predict Social Market

Sajjad Salehi, F. Taghiyareh
{"title":"Introspective Agents in Opinion Formation Modeling to Predict Social Market","authors":"Sajjad Salehi, F. Taghiyareh","doi":"10.1109/ICWR.2019.8765268","DOIUrl":null,"url":null,"abstract":"Individuals may change their opinion in effect of a wide range of factors like interaction with peer groups, governmental policies and personal intentions. Works in this area mainly focus on individuals in social network and their interactions while neglect other factors. In this paper we have introduced an opinion formation model that consider the internal tendency as a personal feature of individuals in social network. In this model agents may trust, distrust or be neutral to their neighbors. They modify their opinion based on the opinion of their neighbors, trust/distrust to them while considering the internal tendency. The results of simulation show that this model can predict the opinion of social network especially when the average of nodal degree and clustering coefficient are high enough. Since this model can predict the preferences of individuals in market, it can be used to define marketing and production strategy.","PeriodicalId":6680,"journal":{"name":"2019 5th International Conference on Web Research (ICWR)","volume":"53 14","pages":"28-34"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Web Research (ICWR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWR.2019.8765268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Individuals may change their opinion in effect of a wide range of factors like interaction with peer groups, governmental policies and personal intentions. Works in this area mainly focus on individuals in social network and their interactions while neglect other factors. In this paper we have introduced an opinion formation model that consider the internal tendency as a personal feature of individuals in social network. In this model agents may trust, distrust or be neutral to their neighbors. They modify their opinion based on the opinion of their neighbors, trust/distrust to them while considering the internal tendency. The results of simulation show that this model can predict the opinion of social network especially when the average of nodal degree and clustering coefficient are high enough. Since this model can predict the preferences of individuals in market, it can be used to define marketing and production strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
意见形成模型中的内省主体预测社会市场
个人可能会在一系列因素的影响下改变自己的观点,比如与同伴群体的互动、政府政策和个人意图。这方面的研究主要关注社会网络中的个体及其相互作用,而忽略了其他因素。本文提出了一种将社会网络中个体的内在倾向视为个体特征的意见形成模型。在这个模型中,代理可以信任、不信任或对邻居保持中立。他们根据邻居的意见来改变自己的看法,对他们的信任/不信任,同时考虑到内部趋势。仿真结果表明,当节点度和聚类系数的平均值足够大时,该模型能较好地预测社会网络的意见。由于该模型可以预测个人在市场中的偏好,因此可以用来定义营销和生产策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Anomaly-Based IDS for Detecting Attacks in RPL-Based Internet of Things A Sentiment Aggregation System based on an OWA Operator Using Web Mining in the Analysis of Housing Prices: A Case study of Tehran An Adaptive Machine Learning Based Approach for Phishing Detection Using Hybrid Features Mobility-Aware Parent Selection for Routing Protocol in Wireless Sensor Networks using RPL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1