{"title":"Application of flow cytometry in transfusion medicine: The Sanjay Gandhi Post Graduate Institute of Medical Sciences, India experience.","authors":"Rajendra Chaudhary, Sudipta Sekhar Das","doi":"10.4103/ajts.ajts_61_22","DOIUrl":null,"url":null,"abstract":"<p><p>The application of flow cytometry (FC) is diverse and this powerful tool in used in multiple disciplines such as molecular biology, immunology, cancer biology, virology, and infectious disease screening. FC analyzes a single cell or a particle very rapidly as they flow past single or multiple lasers while suspended in buffered solution. FC has a great impact in the field of transfusion medicine (TM) due to its ability to analyze individual cell population and cell epitopes by sensitive, reproducible, and objective methodologies. The main uses of FC in TM are detection of fetomaternal hemorrhage, diagnosis of paroxysmal nocturnal hemoglobinuria, quantification of D antigen, detection of platelet antibody, quality control of blood components, for example, residual leukocyte counts and evaluation of CD34-positive hematopoietic progenitor cells in stem cell grafts. In recent years, FC has been implemented as an alternative method for the detection and characterization of red cell autoantibodies in autoimmune hemolytic anemia. Many workers considered FC as a very good complement when aberrant expression of various erythrocyte antigens needs to be elucidated. It has been extensively used in the resolution of ABO discrepancies and chimerism study. FC has also been used successfully in various platelet immunological studies. In the recent past, FC has been used in several studies to assess the platelet storage lesions and elucidate granulocyte/monocyte integrity and immunology. FC analysis of CD34+ stem cells is now the method of choice to determine the dosage of the collected progenitor cells. The technique is vastly used to evaluate residual leukocytes in leukodepleted blood components. We conclude that flow cytometers are becoming smaller, cheaper, and more user-friendly and are available in many routine laboratories. FC represents a highly innovative technique for many common diagnostic and scientific fields in TM. Finally, it is the tool of choice to develop and optimize new cellular and immunotherapeutic trials.</p>","PeriodicalId":42296,"journal":{"name":"Asian Journal of Transfusion Science","volume":"16 2","pages":"159-166"},"PeriodicalIF":0.6000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b9/43/AJTS-16-159.PMC9855202.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Transfusion Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/ajts.ajts_61_22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The application of flow cytometry (FC) is diverse and this powerful tool in used in multiple disciplines such as molecular biology, immunology, cancer biology, virology, and infectious disease screening. FC analyzes a single cell or a particle very rapidly as they flow past single or multiple lasers while suspended in buffered solution. FC has a great impact in the field of transfusion medicine (TM) due to its ability to analyze individual cell population and cell epitopes by sensitive, reproducible, and objective methodologies. The main uses of FC in TM are detection of fetomaternal hemorrhage, diagnosis of paroxysmal nocturnal hemoglobinuria, quantification of D antigen, detection of platelet antibody, quality control of blood components, for example, residual leukocyte counts and evaluation of CD34-positive hematopoietic progenitor cells in stem cell grafts. In recent years, FC has been implemented as an alternative method for the detection and characterization of red cell autoantibodies in autoimmune hemolytic anemia. Many workers considered FC as a very good complement when aberrant expression of various erythrocyte antigens needs to be elucidated. It has been extensively used in the resolution of ABO discrepancies and chimerism study. FC has also been used successfully in various platelet immunological studies. In the recent past, FC has been used in several studies to assess the platelet storage lesions and elucidate granulocyte/monocyte integrity and immunology. FC analysis of CD34+ stem cells is now the method of choice to determine the dosage of the collected progenitor cells. The technique is vastly used to evaluate residual leukocytes in leukodepleted blood components. We conclude that flow cytometers are becoming smaller, cheaper, and more user-friendly and are available in many routine laboratories. FC represents a highly innovative technique for many common diagnostic and scientific fields in TM. Finally, it is the tool of choice to develop and optimize new cellular and immunotherapeutic trials.