{"title":"Software structure evolution and relation to subgraph defectiveness","authors":"Ana Vrankovic, Tihana Galinac Grbac, Z. Car","doi":"10.1049/IET-SEN.2018.5060","DOIUrl":null,"url":null,"abstract":"Network analysis has been successfully applied in software engineering to understand structural effects in the software. System software is represented as a network graph, and network metrics are used to analyse system quality. This study is motivated by a previous study, which represents the software structure as three-node subgraphs and empirically identifies that software structure continuously evolves over system releases. Here, the authors extend the previous study to analyse the relation of structural evolution and the defectiveness of subgraphs in the software network graph. This study investigates the behaviour of subgraph defects through software evolution and their impact on system defectiveness. Statistical methods were used to study subgraph defectiveness across versions of the systems and across subgraph types. The authors conclude that software versions have similar behaviours in terms of average subgraph type defectiveness and subgraph frequency distributions. However, different subgraph types have different defectiveness distributions. Based on these conclusions, the authors motivate the use of subgraph-based software representation in defect predictions and software modelling. These promising findings contribute to the further development of the software engineering discipline and help software developers and quality management in terms of better modelling and focusing their testing efforts within the code structure represented by subgraphs.","PeriodicalId":13395,"journal":{"name":"IET Softw.","volume":"103 6","pages":"355-367"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Softw.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/IET-SEN.2018.5060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Network analysis has been successfully applied in software engineering to understand structural effects in the software. System software is represented as a network graph, and network metrics are used to analyse system quality. This study is motivated by a previous study, which represents the software structure as three-node subgraphs and empirically identifies that software structure continuously evolves over system releases. Here, the authors extend the previous study to analyse the relation of structural evolution and the defectiveness of subgraphs in the software network graph. This study investigates the behaviour of subgraph defects through software evolution and their impact on system defectiveness. Statistical methods were used to study subgraph defectiveness across versions of the systems and across subgraph types. The authors conclude that software versions have similar behaviours in terms of average subgraph type defectiveness and subgraph frequency distributions. However, different subgraph types have different defectiveness distributions. Based on these conclusions, the authors motivate the use of subgraph-based software representation in defect predictions and software modelling. These promising findings contribute to the further development of the software engineering discipline and help software developers and quality management in terms of better modelling and focusing their testing efforts within the code structure represented by subgraphs.