Sarah Strohkorb, Iolanda Leite, Natalie Warren, B. Scassellati
{"title":"Classification of Children's Social Dominance in Group Interactions with Robots","authors":"Sarah Strohkorb, Iolanda Leite, Natalie Warren, B. Scassellati","doi":"10.1145/2818346.2820735","DOIUrl":null,"url":null,"abstract":"As social robots become more widespread in educational environments, their ability to understand group dynamics and engage multiple children in social interactions is crucial. Social dominance is a highly influential factor in social interactions, expressed through both verbal and nonverbal behaviors. In this paper, we present a method for determining whether a participant is high or low in social dominance in a group interaction with children and robots. We investigated the correlation between many verbal and nonverbal behavioral features with social dominance levels collected through teacher surveys. We additionally implemented Logistic Regression and Support Vector Machines models with classification accuracies of 81% and 89%, respectively, showing that using a small subset of nonverbal behavioral features, these models can successfully classify children's social dominance level. Our approach for classifying social dominance is novel not only for its application to children, but also for achieving high classification accuracies using a reduced set of nonverbal features that, in future work, can be automatically extracted with current sensing technology.","PeriodicalId":20486,"journal":{"name":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","volume":"32 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818346.2820735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
As social robots become more widespread in educational environments, their ability to understand group dynamics and engage multiple children in social interactions is crucial. Social dominance is a highly influential factor in social interactions, expressed through both verbal and nonverbal behaviors. In this paper, we present a method for determining whether a participant is high or low in social dominance in a group interaction with children and robots. We investigated the correlation between many verbal and nonverbal behavioral features with social dominance levels collected through teacher surveys. We additionally implemented Logistic Regression and Support Vector Machines models with classification accuracies of 81% and 89%, respectively, showing that using a small subset of nonverbal behavioral features, these models can successfully classify children's social dominance level. Our approach for classifying social dominance is novel not only for its application to children, but also for achieving high classification accuracies using a reduced set of nonverbal features that, in future work, can be automatically extracted with current sensing technology.