{"title":"Non-Hermitian Ferromagnetism in an Ultracold Fermi Gas","authors":"H. Tajima, K. Iida","doi":"10.7566/JPSJ.90.024004","DOIUrl":null,"url":null,"abstract":"We develop a non-Hermitian effective theory for a repulsively interacting Fermi gas in the excited branch. The on-shell $T$-matrix is employed as a complex-valued interaction term, which describes a repulsive interaction between atoms in the excited branch and a two-body inelastic decay to the attractive branch. To see the feature of this model, we have addressed, in the weak coupling regime, the excitation properties of a repulsive Fermi polaron as well as the time-dependent number density. The analytic expressions obtained for these quantities qualitatively show a good agreement with recent experiments. By calculating the dynamical transverse spin susceptibility in the random phase approximation, we show that a ferromagnetic system with nonzero polarization undergoes a dynamical instability and tends towards a heterogeneous phase.","PeriodicalId":8838,"journal":{"name":"arXiv: Quantum Gases","volume":"71 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7566/JPSJ.90.024004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We develop a non-Hermitian effective theory for a repulsively interacting Fermi gas in the excited branch. The on-shell $T$-matrix is employed as a complex-valued interaction term, which describes a repulsive interaction between atoms in the excited branch and a two-body inelastic decay to the attractive branch. To see the feature of this model, we have addressed, in the weak coupling regime, the excitation properties of a repulsive Fermi polaron as well as the time-dependent number density. The analytic expressions obtained for these quantities qualitatively show a good agreement with recent experiments. By calculating the dynamical transverse spin susceptibility in the random phase approximation, we show that a ferromagnetic system with nonzero polarization undergoes a dynamical instability and tends towards a heterogeneous phase.