An Experimental and Numerical Analysis of Gap Resonance Applicable for FLNG Side-by-Side Offloading

Jideofor Collins Nwafor, Zhiqiang Hu
{"title":"An Experimental and Numerical Analysis of Gap Resonance Applicable for FLNG Side-by-Side Offloading","authors":"Jideofor Collins Nwafor, Zhiqiang Hu","doi":"10.1115/omae2021-62059","DOIUrl":null,"url":null,"abstract":"\n The present research focuses on the experimental and numerical analysis of nonlinear gap resonance which can occur for two side-by-side configured vessels during the offloading operation of Liquified Natural Gas (LNG). The proximity of the FLNG (Floating Liquefied Natural Gas) facility and LNGC (Liquified Natural Gas Carrier) brings about the formation of a long narrow gap region between the two vessels. The model test was carried out in a wave flume with vessels of different sizes to obtain the resonance response at different locations in the gap region with the effects of gap distances and vessel drafts in incident waves of different wave frequencies and wave directions analysed. It was found that certain model configurations produce increased wave amplification between the vessels, these were highlighted and presented and have the possibility of being predicted to prevent the occurrence. The numerical analysis was carried out with the potential flow solver SIMA in the time domain and a calibrated damping factor was assigned to suppress the overestimated wave elevation in the narrow gap region.","PeriodicalId":23784,"journal":{"name":"Volume 6: Ocean Engineering","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2021-62059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present research focuses on the experimental and numerical analysis of nonlinear gap resonance which can occur for two side-by-side configured vessels during the offloading operation of Liquified Natural Gas (LNG). The proximity of the FLNG (Floating Liquefied Natural Gas) facility and LNGC (Liquified Natural Gas Carrier) brings about the formation of a long narrow gap region between the two vessels. The model test was carried out in a wave flume with vessels of different sizes to obtain the resonance response at different locations in the gap region with the effects of gap distances and vessel drafts in incident waves of different wave frequencies and wave directions analysed. It was found that certain model configurations produce increased wave amplification between the vessels, these were highlighted and presented and have the possibility of being predicted to prevent the occurrence. The numerical analysis was carried out with the potential flow solver SIMA in the time domain and a calibrated damping factor was assigned to suppress the overestimated wave elevation in the narrow gap region.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
适用于FLNG并排卸载的间隙共振实验与数值分析
本文对液化天然气(LNG)卸油过程中两艘并排配置船可能发生的非线性间隙共振进行了实验和数值分析。浮式液化天然气(FLNG)设施和液化天然气运输船(lng Carrier)的邻近使得两艘船之间形成了一个狭长的间隙区域。在波浪水槽中进行了不同尺寸容器的模型试验,获得了间隙区不同位置的共振响应,并分析了不同频率和波向入射波中间隙距离和容器吃水的影响。研究发现,某些模型配置会增加血管之间的波浪放大,这些被强调和呈现,并有可能被预测以防止发生。采用时域势流求解器SIMA进行了数值分析,并通过标定阻尼因子抑制窄间隙区过高的波高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Conceptual Large Autonomous Subsea Freight-Glider for Liquid CO2 Transportation Assessment of Wind and Wave High-Resolution Forecasts During High-Energy Weather Events in the Brazilian Coast A Low-Cost Modular Image-Based Approach to Characterize Large-Field Wave Shapes in Glass Wave Flume Coupling of a Boundary Element Method With a Boundary Layer Method for Accurate Rudder Force Calculation Within the Early Design Stage Hydrodynamic Impact on Wedges During Water Entry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1