Christina K Kim, Alex L Kolodkin, Kang Shen, Garret D Stuber
{"title":"Building synapses: Using a synthetic approach to bridge synaptic membranes.","authors":"Christina K Kim, Alex L Kolodkin, Kang Shen, Garret D Stuber","doi":"10.12703/r-01-0000017","DOIUrl":null,"url":null,"abstract":"<p><p>Synapses are specialized cellular junctions essential for communication between neurons. Synapse loss occurs in many neurodegenerative diseases. Harnessing our molecular knowledge of the development and maintenance of synapses, Suzuki <i>et al</i>. present the first comprehensive attempt to use a synthetic protein to bridge the pre- and postsynaptic membranes<sup>1</sup>. They show that this powerful approach can stimulate the formation of pre- and postsynaptic specializations <i>in vitro</i>, rescue synaptic deficits of mutant mice <i>in vivo</i>, and ameliorate synapse loss and behavioral abnormalities in both Alzheimer's disease and spinal cord injury mouse models.</p>","PeriodicalId":73016,"journal":{"name":"Faculty reviews","volume":"11 ","pages":"25"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9533766/pdf/facrev-11-25.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faculty reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12703/r-01-0000017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Synapses are specialized cellular junctions essential for communication between neurons. Synapse loss occurs in many neurodegenerative diseases. Harnessing our molecular knowledge of the development and maintenance of synapses, Suzuki et al. present the first comprehensive attempt to use a synthetic protein to bridge the pre- and postsynaptic membranes1. They show that this powerful approach can stimulate the formation of pre- and postsynaptic specializations in vitro, rescue synaptic deficits of mutant mice in vivo, and ameliorate synapse loss and behavioral abnormalities in both Alzheimer's disease and spinal cord injury mouse models.