Quantifying Uncertainty in Source Term Estimation with Tensorflow Probability

A. Fanfarillo
{"title":"Quantifying Uncertainty in Source Term Estimation with Tensorflow Probability","authors":"A. Fanfarillo","doi":"10.1109/UrgentHPC49580.2019.00006","DOIUrl":null,"url":null,"abstract":"Fast and accurate location and quantification of a dangerous chemical, biological or radiological release plays a significant role in evaluating emergency situations and their consequences. Thanks to the advent of Deep Learning frameworks (e.g. Tensorflow) and new specialized hardware (e.g. Tensor Cores), the excellent fitting ability of Artificial Neural Networks (ANN) has been used by several researchers to model atmospheric dispersion. Despite the high accuracy and fast prediction, regular ANNs do not provide any information about the uncertainty of the prediction. Such uncertainty can be the result of a combination of measurement noise and model architecture. In an urgent decision making situation, the ability to provide fast prediction along with a quantification of the uncertainty is of paramount importance. In this work, a Probabilistic Deep Learning model for source term estimation is presented, using the Tensorflow Probability framework.","PeriodicalId":6723,"journal":{"name":"2019 IEEE/ACM HPC for Urgent Decision Making (UrgentHPC)","volume":"38 ","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM HPC for Urgent Decision Making (UrgentHPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UrgentHPC49580.2019.00006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Fast and accurate location and quantification of a dangerous chemical, biological or radiological release plays a significant role in evaluating emergency situations and their consequences. Thanks to the advent of Deep Learning frameworks (e.g. Tensorflow) and new specialized hardware (e.g. Tensor Cores), the excellent fitting ability of Artificial Neural Networks (ANN) has been used by several researchers to model atmospheric dispersion. Despite the high accuracy and fast prediction, regular ANNs do not provide any information about the uncertainty of the prediction. Such uncertainty can be the result of a combination of measurement noise and model architecture. In an urgent decision making situation, the ability to provide fast prediction along with a quantification of the uncertainty is of paramount importance. In this work, a Probabilistic Deep Learning model for source term estimation is presented, using the Tensorflow Probability framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用张sorflow概率量化源项估计中的不确定性
在评估紧急情况及其后果方面,对危险化学、生物或放射性释放进行快速和准确的定位和量化发挥着重要作用。由于深度学习框架(如Tensorflow)和新的专用硬件(如Tensor Cores)的出现,人工神经网络(ANN)出色的拟合能力已被一些研究人员用于模拟大气弥散。常规人工神经网络具有预测精度高、预测速度快的特点,但不能提供预测不确定性的信息。这种不确定性可能是测量噪声和模型结构共同作用的结果。在紧急决策情况下,提供快速预测以及对不确定性进行量化的能力是至关重要的。在这项工作中,使用Tensorflow概率框架提出了一个用于源项估计的概率深度学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Copyright notice] Urgent Tsunami Computing On-Demand Urgent High Performance Computing Utilizing the Google Cloud Platform [Title page] An Interactive Data-Driven HPC System for Forecasting Weather, Wildland Fire, and Smoke
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1