Photocatalytic Degradation of Polyethylene Microplastics and Disinfection of E. coli in Water over Fe- and Ag-Modified TiO2 Nanotubes

Yuwendi Yuwendi, M. Ibadurrohman, Setiadi Setiadi, S. Slamet
{"title":"Photocatalytic Degradation of Polyethylene Microplastics and Disinfection of E. coli in Water over Fe- and Ag-Modified TiO2 Nanotubes","authors":"Yuwendi Yuwendi, M. Ibadurrohman, Setiadi Setiadi, S. Slamet","doi":"10.9767/bcrec.17.2.13400.263-277","DOIUrl":null,"url":null,"abstract":"In this study, Fe- and Ag-modified TiO2 nanotubes were synthesized via an anodization method as photocatalysts for degradation of polyethylene microplastics and disinfection of Escherichia coli (E. coli). The anodization voltage, as well as the Fe3+ or Ag+ concentrations on TiO2 nanotubes were evaluated and correlated to their corresponding photocatalytic properties. TiO2 nanotubes were firstly synthesized by anodization of Ti plates in a glycerol-based electrolyte, followed by incorporation of either Fe or Ag via a Successive Ionic Layer Adsorption and Reaction (SILAR) method with Fe(NO3)3 and AgNO3 as Fe and Ag precursors, respectively. UV-Vis DRS shows that the addition of Fe or Ag on TiO2 nanotubes causes a redshift in the absorption spectra. The X-ray diffractograms indicate that, in the case of Fe-modified samples, Fe3+ was successfully incorporated into TiO2 lattice, while Ag scatters around the surface of the tubes as Ag and Ag2O nanoparticles. A microplastic degradation test was carried out for 90 mins inside a photoreactor with UVC illumination. TiO2 nanotubes that are anodized with a voltage of 30 V exhibit the best degradation results with 17.33% microplastic weight loss in 90 mins. Among the modified TiO2 nanotubes, 0.03 M Ag-TiO2 was the only one that surpassed the unmodified TiO2 in terms of microplastic degradation in the water, offering up to 18% microplastic weight loss in 90 min. In terms of E. coli disinfection, 0.03M Ag-TiO2 exhibit better performance than its unmodified counterpart, revealing 99.999% bactericidal activities in 10 mins. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":9366,"journal":{"name":"Bulletin of Chemical Reaction Engineering & Catalysis","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Chemical Reaction Engineering & Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9767/bcrec.17.2.13400.263-277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this study, Fe- and Ag-modified TiO2 nanotubes were synthesized via an anodization method as photocatalysts for degradation of polyethylene microplastics and disinfection of Escherichia coli (E. coli). The anodization voltage, as well as the Fe3+ or Ag+ concentrations on TiO2 nanotubes were evaluated and correlated to their corresponding photocatalytic properties. TiO2 nanotubes were firstly synthesized by anodization of Ti plates in a glycerol-based electrolyte, followed by incorporation of either Fe or Ag via a Successive Ionic Layer Adsorption and Reaction (SILAR) method with Fe(NO3)3 and AgNO3 as Fe and Ag precursors, respectively. UV-Vis DRS shows that the addition of Fe or Ag on TiO2 nanotubes causes a redshift in the absorption spectra. The X-ray diffractograms indicate that, in the case of Fe-modified samples, Fe3+ was successfully incorporated into TiO2 lattice, while Ag scatters around the surface of the tubes as Ag and Ag2O nanoparticles. A microplastic degradation test was carried out for 90 mins inside a photoreactor with UVC illumination. TiO2 nanotubes that are anodized with a voltage of 30 V exhibit the best degradation results with 17.33% microplastic weight loss in 90 mins. Among the modified TiO2 nanotubes, 0.03 M Ag-TiO2 was the only one that surpassed the unmodified TiO2 in terms of microplastic degradation in the water, offering up to 18% microplastic weight loss in 90 min. In terms of E. coli disinfection, 0.03M Ag-TiO2 exhibit better performance than its unmodified counterpart, revealing 99.999% bactericidal activities in 10 mins. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fe和ag修饰TiO2纳米管光催化降解聚乙烯微塑料及水中大肠杆菌的研究
本研究通过阳极氧化法制备了Fe和ag修饰的TiO2纳米管,作为降解聚乙烯微塑料和消毒大肠杆菌的光催化剂。评价了阳极氧化电压、TiO2纳米管上的Fe3+或Ag+浓度及其光催化性能。首先在甘油基电解质中阳极氧化钛板,然后以Fe(NO3)3和AgNO3分别作为Fe和Ag前驱体,通过连续离子层吸附和反应(SILAR)法分别掺入Fe或Ag,合成TiO2纳米管。UV-Vis DRS表明,在TiO2纳米管上添加Fe或Ag会引起吸收光谱的红移。x射线衍射图表明,在fe修饰的样品中,Fe3+被成功地结合到TiO2晶格中,而Ag则以Ag和Ag2O纳米粒子的形式散布在管的表面。在UVC照明的光反应器中进行了90分钟的微塑料降解试验。在电压为30 V的阳极氧化条件下,TiO2纳米管在90 min内降解效果最好,微塑料重量减少17.33%。在改性后的TiO2纳米管中,0.03M Ag-TiO2对水中微塑料的降解能力是唯一超过未改性TiO2的,在90 min内可使微塑料重量减轻18%。在对大肠杆菌的消毒方面,0.03M Ag-TiO2表现出优于未改性TiO2的性能,在10 min内杀菌活性达到99.999%。版权所有©2022作者所有,BCREC集团出版。这是一篇基于CC BY-SA许可(https://creativecommons.org/licenses/by-sa/4.0)的开放获取文章。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesize and Characterization of Pt-supported Co-ZIF for Catalytic Hydrocracking and Hydroisomerization of n-Hexadecane Efficient Adsorption of Methylene Blue Dye Using Ni/Al Layered Double Hydroxide-Graphene Oxide Composite Use of Sulfuric Acid-Impregnated Biochar Catalyst in Making of Biodiesel From Waste Cooking Oil Via Leaching Method Hexagonal TiO2/SiO2 Porous Microplates for Methylene Blue Photodegradation Conversion of Sunan Candlenut Oil to Aromatic Hydrocarbons with Hydrocracking Process Over Nano-HZSM-5 Catalyst
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1