T. Urano, H. Ihara, Yasuhiro Suzuki, N. Nagai, Y. Takada, A. Takada
{"title":"Soluble thrombomodulin quenches thrombin-mediated neutralization of PAI-1 activity and inhibits fibrinolysis through a TAFI independent mechanism","authors":"T. Urano, H. Ihara, Yasuhiro Suzuki, N. Nagai, Y. Takada, A. Takada","doi":"10.1054/FIPR.2000.0041","DOIUrl":null,"url":null,"abstract":"Abstract Objective: To evaluate the effect of thrombomodulin on thrombin-mediated neutralization of plasminogen activator inhibitor 1 (PAl-1) activity which results in the enhancement of the fibrinolytic activity. Design: We studied the effect of recombinant human soluble TM (rhs TM) on the interaction between human thrombin and PAI-1. Its subsequent effect on tissue plasminogen activator (tPA)-induced lysis of PAl-1 enriched fibrin clot was also evaluated. Results: rhsTM abolished the high molecular weight complex formation between thrombin and PAl-1 and quenched the neutralization of PAl-1 activity by thrombin in a dose-dependent manner. rhsTM also caused dose-dependent inhibition of tPA-induced lysis of PAl-1 enriched fibrin clots in a purified system, which had been shown to be accelerated by increasing concentration of thrombin by neutralizing PAl-1 activity. This inhibition was not observed when PAl-1 was not present in the fibrin clot. Euglobulin clot lysis time (ECLT), which is determined by the balance between tPA and PAl-1, was prolonged by rhsTM. This prolongation was partially abolished by anti-PAl-1 polyclonal IgG, but was unaffected by potato carboxyl peptidase inhibitor. Conclusion: The inhibition of thrombin-dependent enhancement of fibrinolysis by TM appears to involve a mechanism of quenching of thrombin-mediated neutralization of PAl-1 activity which is independent of thrombin activatable fibrinolysis inhibitor (TAFl).","PeriodicalId":100526,"journal":{"name":"Fibrinolysis and Proteolysis","volume":"90 1","pages":"264-271"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibrinolysis and Proteolysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1054/FIPR.2000.0041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract Objective: To evaluate the effect of thrombomodulin on thrombin-mediated neutralization of plasminogen activator inhibitor 1 (PAl-1) activity which results in the enhancement of the fibrinolytic activity. Design: We studied the effect of recombinant human soluble TM (rhs TM) on the interaction between human thrombin and PAI-1. Its subsequent effect on tissue plasminogen activator (tPA)-induced lysis of PAl-1 enriched fibrin clot was also evaluated. Results: rhsTM abolished the high molecular weight complex formation between thrombin and PAl-1 and quenched the neutralization of PAl-1 activity by thrombin in a dose-dependent manner. rhsTM also caused dose-dependent inhibition of tPA-induced lysis of PAl-1 enriched fibrin clots in a purified system, which had been shown to be accelerated by increasing concentration of thrombin by neutralizing PAl-1 activity. This inhibition was not observed when PAl-1 was not present in the fibrin clot. Euglobulin clot lysis time (ECLT), which is determined by the balance between tPA and PAl-1, was prolonged by rhsTM. This prolongation was partially abolished by anti-PAl-1 polyclonal IgG, but was unaffected by potato carboxyl peptidase inhibitor. Conclusion: The inhibition of thrombin-dependent enhancement of fibrinolysis by TM appears to involve a mechanism of quenching of thrombin-mediated neutralization of PAl-1 activity which is independent of thrombin activatable fibrinolysis inhibitor (TAFl).