Multiple Binarization Quadtree Framework for Optimizing Deep Learning-Based Smoke Synthesis Method

Jong-Hyun Kim
{"title":"Multiple Binarization Quadtree Framework for Optimizing Deep Learning-Based Smoke Synthesis Method","authors":"Jong-Hyun Kim","doi":"10.9708/JKSCI.2021.26.04.047","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a quadtree-based optimization technique that enables fast Super-resolution(SR) computation by efficiently classifying and dividing physics-based simulation data required to calculate SR. The proposed method reduces the time required for quadtree computation by downscaling the smoke simulation data used as input data. By binarizing the density of the smoke in this process, a quadtree is constructed while mitigating the problem of numerical loss of density in the downscaling process. The data used for training is the COCO 2017 Dataset, and the artificial neural network uses a VGG19-based network. In order to prevent data loss when passing through the convolutional layer, similar to the residual method, the output value of the previous layer is added and learned. In the case of smoke, the proposed method achieved a speed improvement of about 15 to 18 times compared to the previous approach.","PeriodicalId":17254,"journal":{"name":"Journal of the Korea Society of Computer and Information","volume":"2 1","pages":"47-53"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korea Society of Computer and Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9708/JKSCI.2021.26.04.047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a quadtree-based optimization technique that enables fast Super-resolution(SR) computation by efficiently classifying and dividing physics-based simulation data required to calculate SR. The proposed method reduces the time required for quadtree computation by downscaling the smoke simulation data used as input data. By binarizing the density of the smoke in this process, a quadtree is constructed while mitigating the problem of numerical loss of density in the downscaling process. The data used for training is the COCO 2017 Dataset, and the artificial neural network uses a VGG19-based network. In order to prevent data loss when passing through the convolutional layer, similar to the residual method, the output value of the previous layer is added and learned. In the case of smoke, the proposed method achieved a speed improvement of about 15 to 18 times compared to the previous approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化基于深度学习的烟雾合成方法的多重二值化四叉树框架
在本文中,我们提出了一种基于四叉树的优化技术,该技术通过有效地分类和划分计算SR所需的基于物理的模拟数据来实现快速的超分辨率(SR)计算。该方法通过缩小用作输入数据的烟雾模拟数据来减少四叉树计算所需的时间。在此过程中,通过对烟雾的密度进行二值化,构造了一棵四叉树,同时减轻了降尺度过程中密度的数值损失问题。用于训练的数据是COCO 2017数据集,人工神经网络使用基于vgg19的网络。为了防止在通过卷积层时数据丢失,与残差法类似,对前一层的输出值进行相加学习。在烟雾的情况下,与之前的方法相比,所提出的方法实现了大约15到18倍的速度提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comparison of the Clinical Competence, Knowledge of Patient Safety Management and Confidence of Patient Safety Management according to Clinical Practice Experience of Nursing Students A study on the impact of host's personalized offline services and platform ease of use on shared homestay consumers' purchase intention Deep Learning-Based Brain Tumor Classification in MRI images using Ensemble of Deep Features Methodology for Search Intent-based Document Recommendation A Classification Model for Illegal Debt Collection Using Rule and Machine Learning Based Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1