{"title":"The structure of rapidly solidified foil of Al – Bi alloys","authors":"V. Shepelevich","doi":"10.33581/2520-2243-2022-1-75-79","DOIUrl":null,"url":null,"abstract":"The results of study of the microstructure and texture of aluminum alloys, containing 0.12 and 0.25 at. % Bi, obtained with high-speed solidification, are presented (melt cooling rate liquid – not less 105 K /s). Texture (111) aluminum is formed in the rapidly solidified foils of investigated alloys and it is conserved under annealing at 523 K during 2 h. The average chord of bismuth sections does not exceed 0.05 µm. As the crystallisation front moves from surface A contacted with crystalliser to the surface B, the average size of dispersed bismuth particles increases. Foils of the alloys dissolve in water at room temperature actively forming hydrogen bubbles in vessel with water, white powder of aluminum oxide in an amorphous state and bismuth precipitations. Isotermical annealing of foils at 573 K for 5 h causes a change in distribution of chords in size groups and increases their average value. After the annealing bismuth particles are localised on low- and high-angle boundaries. The rapidly solidified foils of Al – Bi system can be used to produced hydrogen, aluminum oxide powder and create technical devices using hydrogen.","PeriodicalId":17264,"journal":{"name":"Journal of the Belarusian State University. Physics","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Belarusian State University. Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33581/2520-2243-2022-1-75-79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The results of study of the microstructure and texture of aluminum alloys, containing 0.12 and 0.25 at. % Bi, obtained with high-speed solidification, are presented (melt cooling rate liquid – not less 105 K /s). Texture (111) aluminum is formed in the rapidly solidified foils of investigated alloys and it is conserved under annealing at 523 K during 2 h. The average chord of bismuth sections does not exceed 0.05 µm. As the crystallisation front moves from surface A contacted with crystalliser to the surface B, the average size of dispersed bismuth particles increases. Foils of the alloys dissolve in water at room temperature actively forming hydrogen bubbles in vessel with water, white powder of aluminum oxide in an amorphous state and bismuth precipitations. Isotermical annealing of foils at 573 K for 5 h causes a change in distribution of chords in size groups and increases their average value. After the annealing bismuth particles are localised on low- and high-angle boundaries. The rapidly solidified foils of Al – Bi system can be used to produced hydrogen, aluminum oxide powder and create technical devices using hydrogen.