Beta-Meta: a meta-analysis application considering heterogeneity among genome-wide association studies.

Q2 Agricultural and Biological Sciences Genomics and Informatics Pub Date : 2022-12-01 DOI:10.5808/gi.22046
Gyungbu Kim, Yoonsuk Lee, Jeong Ho Park, Dongmin Kim, Wonseok Lee
{"title":"Beta-Meta: a meta-analysis application considering heterogeneity among genome-wide association studies.","authors":"Gyungbu Kim,&nbsp;Yoonsuk Lee,&nbsp;Jeong Ho Park,&nbsp;Dongmin Kim,&nbsp;Wonseok Lee","doi":"10.5808/gi.22046","DOIUrl":null,"url":null,"abstract":"<p><p>Many packages for a meta-analysis of genome-wide association studies (GWAS) have beendeveloped to discover genetic variants. Although variations across studies must be considered, there are not many currently-accessible packages that estimate between-study heterogeneity. Thus, we propose a python based application called Beta-Meta which can easilyprocess a meta-analysis by automatically selecting between a fixed effects and a randomeffects model based on heterogeneity. Beta-Meta implements flexible input data manipulation to allow multiple meta-analyses of different genotype-phenotype associations in asingle process. It provides a step-by-step meta-analysis of GWAS for each association inthe following order: heterogeneity test, two different calculations of an effect size and ap-value based on heterogeneity, and the Benjamini-Hochberg p-value adjustment. Thesemethods enable users to validate the results of individual studies with greater statisticalpower and better estimation precision. We elaborate on these and illustrate them with examples from several studies of infertility-related disorders.</p>","PeriodicalId":36591,"journal":{"name":"Genomics and Informatics","volume":"20 4","pages":"e49"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9847376/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5808/gi.22046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Many packages for a meta-analysis of genome-wide association studies (GWAS) have beendeveloped to discover genetic variants. Although variations across studies must be considered, there are not many currently-accessible packages that estimate between-study heterogeneity. Thus, we propose a python based application called Beta-Meta which can easilyprocess a meta-analysis by automatically selecting between a fixed effects and a randomeffects model based on heterogeneity. Beta-Meta implements flexible input data manipulation to allow multiple meta-analyses of different genotype-phenotype associations in asingle process. It provides a step-by-step meta-analysis of GWAS for each association inthe following order: heterogeneity test, two different calculations of an effect size and ap-value based on heterogeneity, and the Benjamini-Hochberg p-value adjustment. Thesemethods enable users to validate the results of individual studies with greater statisticalpower and better estimation precision. We elaborate on these and illustrate them with examples from several studies of infertility-related disorders.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
meta:一项考虑全基因组关联研究异质性的meta分析应用。
许多包的荟萃分析的全基因组关联研究(GWAS)已经开发发现遗传变异。虽然必须考虑研究之间的差异,但目前可获得的评估研究之间异质性的软件包并不多。因此,我们提出了一个基于python的应用程序,称为Beta-Meta,它可以通过自动选择基于异质性的固定效应和随机效应模型来轻松地处理元分析。Beta-Meta实现了灵活的输入数据操作,允许在一个过程中对不同的基因型-表型关联进行多重荟萃分析。它按以下顺序提供了对每个关联的GWAS的逐步元分析:异质性检验,基于异质性的效应大小和ap值的两种不同计算,以及Benjamini-Hochberg p值调整。这些方法使用户能够以更大的统计能力和更好的估计精度验证单个研究的结果。我们详细说明这些,并举例说明他们从几个研究不孕症相关的障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genomics and Informatics
Genomics and Informatics Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Gut metagenomic analysis of gastric cancer patients reveals Akkermansia, Gammaproteobacteria, and Veillonella microbiota as potential non-invasive biomarkers COVID-19 progression towards ARDS: a genome wide study reveals host factors underlying critical COVID-19. Bioinformatic analyses reveal the prognostic significance and potential role of ankyrin 3 (ANK3) in kidney renal clear cell carcinoma. Comparison of digital PCR platforms using the molecular marker. Single-cell RNA sequencing identifies distinct transcriptomic signatures between PMA/ionomycin- and αCD3/αCD28-activated primary human T cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1