Seyed Hossein Shahcheraghi, Jamshid Ayatollahi, Marzieh Lotfi, Alaa A A Aljabali, Mazhar S Al-Zoubi, Pritam Kumar Panda, Vijay Mishra, Saurabh Satija, Nitin B Charbe, Ángel Serrano-Aroca, Bojlul Bahar, Kazuo Takayama, Rohit Goyal, Amit Bhatia, Abdulmajeed G Almutary, Abdullah M Alnuqaydan, Yachana Mishra, Poonam Negi, Aaron Courtney, Paul A McCarron, Hamid A Bakshi, Murtaza M Tambuwala
{"title":"Gene Therapy for Neuropsychiatric Disorders: Potential Targets and Tools.","authors":"Seyed Hossein Shahcheraghi, Jamshid Ayatollahi, Marzieh Lotfi, Alaa A A Aljabali, Mazhar S Al-Zoubi, Pritam Kumar Panda, Vijay Mishra, Saurabh Satija, Nitin B Charbe, Ángel Serrano-Aroca, Bojlul Bahar, Kazuo Takayama, Rohit Goyal, Amit Bhatia, Abdulmajeed G Almutary, Abdullah M Alnuqaydan, Yachana Mishra, Poonam Negi, Aaron Courtney, Paul A McCarron, Hamid A Bakshi, Murtaza M Tambuwala","doi":"10.2174/1871527321666220304153719","DOIUrl":null,"url":null,"abstract":"<p><p>Neuropsychiatric disorders that affect the central nervous system cause considerable pressures on the health care system and have a substantial economic burden on modern societies. The present treatments based on available drugs are mostly ineffective and often costly. The molecular process of neuropsychiatric disorders is closely connected to modifying the genetic structures inherited or caused by damage, toxic chemicals, and some current diseases. Gene therapy is presently an experimental concept for neurological disorders. Clinical applications endeavor to alleviate the symptoms, reduce disease progression, and repair defective genes. Implementing gene therapy in inherited and acquired neurological illnesses entails the integration of several scientific disciplines, including virology, neurology, neurosurgery, molecular genetics, and immunology. Genetic manipulation has the power to minimize or cure illness by inducing genetic alterations at endogenous loci. Gene therapy that involves treating the disease by deleting, silencing, or editing defective genes and delivering genetic material to produce therapeutic molecules has excellent potential as a novel approach for treating neuropsychiatric disorders. With the recent advances in gene selection and vector design quality in targeted treatments, gene therapy could be an effective approach. This review article will investigate and report the newest and the most critical molecules and factors in neuropsychiatric disorder gene therapy. Different genome editing techniques available will be evaluated, and the review will highlight preclinical research of genome editing for neuropsychiatric disorders while also evaluating current limitations and potential strategies to overcome genome editing advancements.</p>","PeriodicalId":10456,"journal":{"name":"CNS & neurological disorders drug targets","volume":"22 1","pages":"51-65"},"PeriodicalIF":2.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS & neurological disorders drug targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1871527321666220304153719","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
Neuropsychiatric disorders that affect the central nervous system cause considerable pressures on the health care system and have a substantial economic burden on modern societies. The present treatments based on available drugs are mostly ineffective and often costly. The molecular process of neuropsychiatric disorders is closely connected to modifying the genetic structures inherited or caused by damage, toxic chemicals, and some current diseases. Gene therapy is presently an experimental concept for neurological disorders. Clinical applications endeavor to alleviate the symptoms, reduce disease progression, and repair defective genes. Implementing gene therapy in inherited and acquired neurological illnesses entails the integration of several scientific disciplines, including virology, neurology, neurosurgery, molecular genetics, and immunology. Genetic manipulation has the power to minimize or cure illness by inducing genetic alterations at endogenous loci. Gene therapy that involves treating the disease by deleting, silencing, or editing defective genes and delivering genetic material to produce therapeutic molecules has excellent potential as a novel approach for treating neuropsychiatric disorders. With the recent advances in gene selection and vector design quality in targeted treatments, gene therapy could be an effective approach. This review article will investigate and report the newest and the most critical molecules and factors in neuropsychiatric disorder gene therapy. Different genome editing techniques available will be evaluated, and the review will highlight preclinical research of genome editing for neuropsychiatric disorders while also evaluating current limitations and potential strategies to overcome genome editing advancements.
期刊介绍:
Aims & Scope
CNS & Neurological Disorders - Drug Targets aims to cover all the latest and outstanding developments on the medicinal chemistry, pharmacology, molecular biology, genomics and biochemistry of contemporary molecular targets involved in neurological and central nervous system (CNS) disorders e.g. disease specific proteins, receptors, enzymes, genes.
CNS & Neurological Disorders - Drug Targets publishes guest edited thematic issues written by leaders in the field covering a range of current topics of CNS & neurological drug targets. The journal also accepts for publication original research articles, letters, reviews and drug clinical trial studies.
As the discovery, identification, characterization and validation of novel human drug targets for neurological and CNS drug discovery continues to grow; this journal is essential reading for all pharmaceutical scientists involved in drug discovery and development.