Adam J Naples, Jennifer H Foss-Feig, Julie M Wolf, Vinod H Srihari, James C McPartland
{"title":"Predictability modulates neural response to eye contact in ASD.","authors":"Adam J Naples, Jennifer H Foss-Feig, Julie M Wolf, Vinod H Srihari, James C McPartland","doi":"10.1186/s13229-022-00519-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Deficits in establishing and maintaining eye-contact are early and persistent vulnerabilities of autism spectrum disorder (ASD), and the neural bases of these deficits remain elusive. A promising hypothesis is that social features of autism may reflect difficulties in making predictions about the social world under conditions of uncertainty. However, no research in ASD has examined how predictability impacts the neural processing of eye-contact in naturalistic interpersonal interactions.</p><p><strong>Method: </strong>We used eye tracking to facilitate an interactive social simulation wherein onscreen faces would establish eye-contact when the participant looked at them. In Experiment One, receipt of eye-contact was unpredictable; in Experiment Two, receipt of eye-contact was predictable. Neural response to eye-contact was measured via the N170 and P300 event-related potentials (ERPs). Experiment One included 23 ASD and 46 typically developing (TD) adult participants. Experiment Two included 25 ASD and 43 TD adult participants.</p><p><strong>Results: </strong>When receipt of eye-contact was unpredictable, individuals with ASD showed increased N170 and increased, but non-specific, P300 responses. The magnitude of the N170 responses correlated with measures of sensory and anxiety symptomology, such that increased response to eye-contact was associated with increased symptomology. However, when receipt of eye-contact was predictable, individuals with ASD, relative to controls, exhibited slower N170s and no differences in the amplitude of N170 or P300.</p><p><strong>Limitations: </strong>Our ASD sample was composed of adults with IQ > 70 and included only four autistic women. Thus, further research is needed to evaluate how these results generalize across the spectrum of age, sex, and cognitive ability. Additionally, as analyses were exploratory, some findings failed to survive false-discovery rate adjustment.</p><p><strong>Conclusions: </strong>Neural response to eye-contact in ASD ranged from attenuated to hypersensitive depending on the predictability of the social context. These findings suggest that the vulnerabilities in eye-contact during social interactions in ASD may arise from differences in anticipation and expectation of eye-contact in addition to the perception of gaze alone.</p>","PeriodicalId":18733,"journal":{"name":"Molecular Autism","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9618208/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Autism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13229-022-00519-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Deficits in establishing and maintaining eye-contact are early and persistent vulnerabilities of autism spectrum disorder (ASD), and the neural bases of these deficits remain elusive. A promising hypothesis is that social features of autism may reflect difficulties in making predictions about the social world under conditions of uncertainty. However, no research in ASD has examined how predictability impacts the neural processing of eye-contact in naturalistic interpersonal interactions.
Method: We used eye tracking to facilitate an interactive social simulation wherein onscreen faces would establish eye-contact when the participant looked at them. In Experiment One, receipt of eye-contact was unpredictable; in Experiment Two, receipt of eye-contact was predictable. Neural response to eye-contact was measured via the N170 and P300 event-related potentials (ERPs). Experiment One included 23 ASD and 46 typically developing (TD) adult participants. Experiment Two included 25 ASD and 43 TD adult participants.
Results: When receipt of eye-contact was unpredictable, individuals with ASD showed increased N170 and increased, but non-specific, P300 responses. The magnitude of the N170 responses correlated with measures of sensory and anxiety symptomology, such that increased response to eye-contact was associated with increased symptomology. However, when receipt of eye-contact was predictable, individuals with ASD, relative to controls, exhibited slower N170s and no differences in the amplitude of N170 or P300.
Limitations: Our ASD sample was composed of adults with IQ > 70 and included only four autistic women. Thus, further research is needed to evaluate how these results generalize across the spectrum of age, sex, and cognitive ability. Additionally, as analyses were exploratory, some findings failed to survive false-discovery rate adjustment.
Conclusions: Neural response to eye-contact in ASD ranged from attenuated to hypersensitive depending on the predictability of the social context. These findings suggest that the vulnerabilities in eye-contact during social interactions in ASD may arise from differences in anticipation and expectation of eye-contact in addition to the perception of gaze alone.
期刊介绍:
Molecular Autism is a peer-reviewed, open access journal that publishes high-quality basic, translational and clinical research that has relevance to the etiology, pathobiology, or treatment of autism and related neurodevelopmental conditions. Research that includes integration across levels is encouraged. Molecular Autism publishes empirical studies, reviews, and brief communications.