Notoginsenoside R1 inhibits hepatitis B virus replication by modulating SIRT1 activity.

IF 1.1 4区 医学 Q4 VIROLOGY Acta virologica Pub Date : 2023-01-01 DOI:10.4149/av_2023_105
Wujing Zhang, Jingjing Cui, Lichun Li, Lijuan Chai, Qingling Hou, Huaqi Yu
{"title":"Notoginsenoside R1 inhibits hepatitis B virus replication by modulating SIRT1 activity.","authors":"Wujing Zhang,&nbsp;Jingjing Cui,&nbsp;Lichun Li,&nbsp;Lijuan Chai,&nbsp;Qingling Hou,&nbsp;Huaqi Yu","doi":"10.4149/av_2023_105","DOIUrl":null,"url":null,"abstract":"<p><p>The hepatitis B virus (HBV) infection remains highly prevalent globally. The present study aimed to explore the possible therapeutic effect of notoginsenoside R1, which has attracted considerable attention due to its diverse pharmacological effects, on HBV infection. The HBV-containing hepatocellular carcinoma cell lines, HepG2 and MHCC97H, were used in this study. We first treated the two cell lines with different concentrations of notoginsenoside R1 and subsequently measured the relative levels of HBV DNA, HBV surface antigen, HBV core antigen, and sirtuin 1 (SIRT1) using reverse transcription-quantitative polymerase chain reaction and western blotting. Finally, an HBV hemodynamic replication model was created to test the effect of notoginsenoside R1 on HBV replication. Notoginsenoside R1 inhibited the replication of HBV. This inhibitory effect was mediated through the downregulation of SIRT1 activity. Additionally, the inhibition of SIRT1 activity by silencing its expression or treatment with the SIRT1 inhibitor, selisistat, suppressed HBV replication. Furthermore, our animal experiments demonstrated that notoginsenoside R1 was effective at suppressing HBV replication in vivo. Thus, notoginsenoside R1 suppresses HBV replication by downregulating SIRT1 activity in vitro and in vivo. Keywords: notoginsenoside R1; hepatitis B virus; SIRT1.</p>","PeriodicalId":7205,"journal":{"name":"Acta virologica","volume":"67 1","pages":"51-58"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta virologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4149/av_2023_105","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The hepatitis B virus (HBV) infection remains highly prevalent globally. The present study aimed to explore the possible therapeutic effect of notoginsenoside R1, which has attracted considerable attention due to its diverse pharmacological effects, on HBV infection. The HBV-containing hepatocellular carcinoma cell lines, HepG2 and MHCC97H, were used in this study. We first treated the two cell lines with different concentrations of notoginsenoside R1 and subsequently measured the relative levels of HBV DNA, HBV surface antigen, HBV core antigen, and sirtuin 1 (SIRT1) using reverse transcription-quantitative polymerase chain reaction and western blotting. Finally, an HBV hemodynamic replication model was created to test the effect of notoginsenoside R1 on HBV replication. Notoginsenoside R1 inhibited the replication of HBV. This inhibitory effect was mediated through the downregulation of SIRT1 activity. Additionally, the inhibition of SIRT1 activity by silencing its expression or treatment with the SIRT1 inhibitor, selisistat, suppressed HBV replication. Furthermore, our animal experiments demonstrated that notoginsenoside R1 was effective at suppressing HBV replication in vivo. Thus, notoginsenoside R1 suppresses HBV replication by downregulating SIRT1 activity in vitro and in vivo. Keywords: notoginsenoside R1; hepatitis B virus; SIRT1.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三七皂苷R1通过调节SIRT1活性抑制乙型肝炎病毒复制。
乙型肝炎病毒(HBV)感染在全球仍然非常普遍。三七皂苷R1因其多种药理作用而备受关注,本研究旨在探讨其对HBV感染的可能治疗作用。本研究使用的是含hbv的肝癌细胞系HepG2和MHCC97H。我们首先用不同浓度的三七皂苷R1处理两株细胞系,随后使用逆转录-定量聚合酶链反应和western blotting检测HBV DNA、HBV表面抗原、HBV核心抗原和sirtuin 1 (SIRT1)的相对水平。最后建立HBV血流动力学复制模型,检验三七皂苷R1对HBV复制的影响。三七皂苷R1抑制HBV复制。这种抑制作用是通过下调SIRT1活性介导的。此外,通过沉默SIRT1表达或使用SIRT1抑制剂selisistat治疗来抑制SIRT1活性,可以抑制HBV复制。此外,我们的动物实验表明,三七皂苷R1在体内有效抑制HBV复制。因此,三七皂苷R1在体外和体内通过下调SIRT1活性抑制HBV复制。关键词:三七皂苷R1;乙型肝炎病毒;SIRT1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta virologica
Acta virologica 医学-病毒学
CiteScore
3.10
自引率
11.80%
发文量
43
审稿时长
>12 weeks
期刊介绍: Acta virologica is an international journal of predominantly molecular and cellular virology. Acta virologica aims to publish papers reporting original results of fundamental and applied research mainly on human, animal and plant viruses at cellular and molecular level. As a matter of tradition, also rickettsiae are included. Areas of interest are virus structure and morphology, molecular biology of virus-cell interactions, molecular genetics of viruses, pathogenesis of viral diseases, viral immunology, vaccines, antiviral drugs and viral diagnostics.
期刊最新文献
The interaction of influenza A virus RNA polymerase PA subunit with the human β-actin protein Construction of recombinant adenovirus-5 vector to prevent replication-competent adenovirus occurrence Virtual screening and molecular dynamics simulation to identify potential SARS-CoV-2 3CLpro inhibitors from a natural product compounds library The TRK-fused gene negatively regulates interferon signaling by inhibiting TBK1 phosphorylation during PPMV-1 infection Favipiravir and ivermectin show in vitro synergistic antiviral activity against SARS-CoV-2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1