Application of artificial intelligence in renal disease

Lijing Yao , Hengyuan Zhang , Mengqin Zhang , Xing Chen , Jun Zhang , Jiyi Huang , Lu Zhang
{"title":"Application of artificial intelligence in renal disease","authors":"Lijing Yao ,&nbsp;Hengyuan Zhang ,&nbsp;Mengqin Zhang ,&nbsp;Xing Chen ,&nbsp;Jun Zhang ,&nbsp;Jiyi Huang ,&nbsp;Lu Zhang","doi":"10.1016/j.ceh.2021.11.003","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial intelligence (AI) has been applied widely in almost every area of our daily lives, due to the growth of computing power, advances in methods and techniques, and the explosion of data, it also plays a critical role in academic disciplines, medicine is not an exception. AI can augment the intelligence of clinicians in diagnosis, prognosis, and treatment decisions.<!--> <!-->Kidney disease causes great economic burden worldwide, with both acute kidney injury and chronic kidney disease bringing about high morbidity and mortality. Outstanding challenges in nephrology may be addressed by leveraging big data and AI.<!--> <!-->In this review, we summarized advances in machine learning (ML), artificial neural network (ANN), convolution neural network (CNN) and deep learning (DL), with a special focus on acute kidney injury (AKI), chronic kidney disease (CKD), end-stage renal disease (ESRD), dialysis, kidney transplantation and nephropathology. AI may not be anticipated to replace the nephrologists’ medical decision-making for now, but instead assisting them in providing optimal personalized therapy for patients.</p></div>","PeriodicalId":100268,"journal":{"name":"Clinical eHealth","volume":"4 ","pages":"Pages 54-61"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588914121000083/pdfft?md5=a5f65740000c4c8859950fae3f68c30a&pid=1-s2.0-S2588914121000083-main.pdf","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical eHealth","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588914121000083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Artificial intelligence (AI) has been applied widely in almost every area of our daily lives, due to the growth of computing power, advances in methods and techniques, and the explosion of data, it also plays a critical role in academic disciplines, medicine is not an exception. AI can augment the intelligence of clinicians in diagnosis, prognosis, and treatment decisions. Kidney disease causes great economic burden worldwide, with both acute kidney injury and chronic kidney disease bringing about high morbidity and mortality. Outstanding challenges in nephrology may be addressed by leveraging big data and AI. In this review, we summarized advances in machine learning (ML), artificial neural network (ANN), convolution neural network (CNN) and deep learning (DL), with a special focus on acute kidney injury (AKI), chronic kidney disease (CKD), end-stage renal disease (ESRD), dialysis, kidney transplantation and nephropathology. AI may not be anticipated to replace the nephrologists’ medical decision-making for now, but instead assisting them in providing optimal personalized therapy for patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能在肾脏疾病中的应用
人工智能(AI)已经广泛应用于我们日常生活的几乎每个领域,由于计算能力的增长,方法和技术的进步,以及数据的爆炸式增长,它在学术学科中也起着至关重要的作用,医学也不例外。人工智能可以增强临床医生在诊断、预后和治疗决策方面的智能。肾脏疾病在世界范围内造成了巨大的经济负担,无论是急性肾损伤还是慢性肾脏疾病都具有很高的发病率和死亡率。利用大数据和人工智能可以解决肾脏病学中的突出挑战。本文综述了机器学习(ML)、人工神经网络(ANN)、卷积神经网络(CNN)和深度学习(DL)的研究进展,重点介绍了急性肾损伤(AKI)、慢性肾病(CKD)、终末期肾病(ESRD)、透析、肾移植和肾脏病理学等方面的研究进展。人工智能目前可能不会取代肾病学家的医疗决策,而是帮助他们为患者提供最佳的个性化治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
期刊最新文献
“AI et al.” The perils of overreliance on Artificial Intelligence by authors in scientific research A systematic review of eHealth and mHealth interventions for lymphedema patients Machine learning and transfer learning techniques for accurate brain tumor classification Internet of Things in healthcare: An adaptive ethical framework for IoT in digital health IoMT Tsukamoto Type-2 fuzzy expert system for tuberculosis and Alzheimer’s disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1