Stabilization of the SARS-CoV-2 receptor binding domain by protein core redesign and deep mutational scanning.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Protein Engineering Design & Selection Pub Date : 2022-02-17 DOI:10.1093/protein/gzac002
Alison C Leonard, Jonathan J Weinstein, Paul J Steiner, Annette H Erbse, Sarel J Fleishman, Timothy A Whitehead
{"title":"Stabilization of the SARS-CoV-2 receptor binding domain by protein core redesign and deep mutational scanning.","authors":"Alison C Leonard, Jonathan J Weinstein, Paul J Steiner, Annette H Erbse, Sarel J Fleishman, Timothy A Whitehead","doi":"10.1093/protein/gzac002","DOIUrl":null,"url":null,"abstract":"<p><p>Stabilizing antigenic proteins as vaccine immunogens or diagnostic reagents is a stringent case of protein engineering and design as the exterior surface must maintain recognition by receptor(s) and antigen-specific antibodies at multiple distinct epitopes. This is a challenge, as stability enhancing mutations must be focused on the protein core, whereas successful computational stabilization algorithms typically select mutations at solvent-facing positions. In this study, we report the stabilization of SARS-CoV-2 Wuhan Hu-1 Spike receptor binding domain using a combination of deep mutational scanning and computational design, including the FuncLib algorithm. Our most successful design encodes I358F, Y365W, T430I, and I513L receptor binding domain mutations, maintains recognition by the receptor ACE2 and a panel of different anti-receptor binding domain monoclonal antibodies, is between 1 and 2°C more thermally stable than the original receptor binding domain using a thermal shift assay, and is less proteolytically sensitive to chymotrypsin and thermolysin than the original receptor binding domain. Our approach could be applied to the computational stabilization of a wide range of proteins without requiring detailed knowledge of active sites or binding epitopes. We envision that this strategy may be particularly powerful for cases when there are multiple or unknown binding sites.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":"35 ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9077414/pdf/gzac002.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering Design & Selection","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/protein/gzac002","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Stabilizing antigenic proteins as vaccine immunogens or diagnostic reagents is a stringent case of protein engineering and design as the exterior surface must maintain recognition by receptor(s) and antigen-specific antibodies at multiple distinct epitopes. This is a challenge, as stability enhancing mutations must be focused on the protein core, whereas successful computational stabilization algorithms typically select mutations at solvent-facing positions. In this study, we report the stabilization of SARS-CoV-2 Wuhan Hu-1 Spike receptor binding domain using a combination of deep mutational scanning and computational design, including the FuncLib algorithm. Our most successful design encodes I358F, Y365W, T430I, and I513L receptor binding domain mutations, maintains recognition by the receptor ACE2 and a panel of different anti-receptor binding domain monoclonal antibodies, is between 1 and 2°C more thermally stable than the original receptor binding domain using a thermal shift assay, and is less proteolytically sensitive to chymotrypsin and thermolysin than the original receptor binding domain. Our approach could be applied to the computational stabilization of a wide range of proteins without requiring detailed knowledge of active sites or binding epitopes. We envision that this strategy may be particularly powerful for cases when there are multiple or unknown binding sites.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过蛋白质核心重新设计和深度突变扫描稳定 SARS-CoV-2 受体结合域。
稳定作为疫苗免疫原或诊断试剂的抗原蛋白是蛋白质工程和设计的一个严格案例,因为其外表面必须保持受体和抗原特异性抗体对多个不同表位的识别。这是一个挑战,因为提高稳定性的突变必须集中在蛋白质核心,而成功的计算稳定化算法通常会选择面向溶剂位置的突变。在本研究中,我们报告了利用深度突变扫描和计算设计(包括 FuncLib 算法)相结合的方法稳定 SARS-CoV-2 武汉胡-1 穗状病毒受体结合域的情况。我们最成功的设计编码了 I358F、Y365W、T430I 和 I513L 受体结合结构域突变,保持了受体 ACE2 和一组不同的抗受体结合结构域单克隆抗体的识别能力,使用热位移测定法比原始受体结合结构域的热稳定性高 1 到 2°C,对糜蛋白酶和热溶解酶的蛋白水解敏感性比原始受体结合结构域低。我们的方法可应用于各种蛋白质的计算稳定化,而无需详细了解活性位点或结合表位。我们设想,当存在多个或未知结合位点时,这种策略可能会特别强大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Protein Engineering Design & Selection
Protein Engineering Design & Selection 生物-生化与分子生物学
CiteScore
3.30
自引率
4.20%
发文量
14
审稿时长
6-12 weeks
期刊介绍: Protein Engineering, Design and Selection (PEDS) publishes high-quality research papers and review articles relevant to the engineering, design and selection of proteins for use in biotechnology and therapy, and for understanding the fundamental link between protein sequence, structure, dynamics, function, and evolution.
期刊最新文献
Optimized single-cell gates for yeast display screening. TIMED-Design: flexible and accessible protein sequence design with convolutional neural networks. Correction to: De novo design of a polycarbonate hydrolase. Interactive computational and experimental approaches improve the sensitivity of periplasmic binding protein-based nicotine biosensors for measurements in biofluids. Design of functional intrinsically disordered proteins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1