Wang Bo , Xue Songbai , Wang Jianxin , Long Weimin , Zhang Qingke
{"title":"Effect of Rare Earth Pr on Creep Behavior of Sn-0.3Ag-0.7Cu-0.5Ga Low-Ag Solder Alloys","authors":"Wang Bo , Xue Songbai , Wang Jianxin , Long Weimin , Zhang Qingke","doi":"10.1016/S1875-5372(18)30205-4","DOIUrl":null,"url":null,"abstract":"<div><p>For development of low-Ag lead free solder alloys for microelectronic packaging, the correlation of creep properties with microstructure of novel Sn-0.3Ag-0.7Cu-0.5Ga (SAC-Ga) solder alloys bearing Pr has been investigated using nanoindentation. The results show that the creep deformation of SAC-Ga, SAC-Ga-0.06Pr, SAC-Ga-0.5Pr is 1717, 1144, and 1472 nm, respectively, which indicates that Pr addition could significantly enhance the creep resistance of SAC-Ga solders due to the refinement and uniform distribution of Cu<sub>6</sub>Sn<sub>5</sub> intermetallic compounds (IMCs). However, compared with the SAC-Ga-0.06Pr solder alloy, the SAC-Ga-0.5Pr alloy shows poorer creep resistance which is mainly attributed to the surface oxidation of excess rare earth Pr. In addition, Dorn model has been used to describe the creep behavior and to obtain stress exponents of the SAC-Ga solder alloys bearing Pr. The strengthening mechanism of creep resistance in SAC-Ga solder alloys bearing Pr is that when encountering refined and well-distributed Cu<sub>6</sub>Sn<sub>5</sub> IMCs, a dislocation line cannot climb through the IMCs but bypass the IMCs, thus leading to a decrease in the creep deformation of the solder alloys bearing Pr.</p></div>","PeriodicalId":21056,"journal":{"name":"稀有金属材料与工程","volume":"47 9","pages":"Pages 2657-2662"},"PeriodicalIF":0.6000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1875-5372(18)30205-4","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"稀有金属材料与工程","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875537218302054","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7
Abstract
For development of low-Ag lead free solder alloys for microelectronic packaging, the correlation of creep properties with microstructure of novel Sn-0.3Ag-0.7Cu-0.5Ga (SAC-Ga) solder alloys bearing Pr has been investigated using nanoindentation. The results show that the creep deformation of SAC-Ga, SAC-Ga-0.06Pr, SAC-Ga-0.5Pr is 1717, 1144, and 1472 nm, respectively, which indicates that Pr addition could significantly enhance the creep resistance of SAC-Ga solders due to the refinement and uniform distribution of Cu6Sn5 intermetallic compounds (IMCs). However, compared with the SAC-Ga-0.06Pr solder alloy, the SAC-Ga-0.5Pr alloy shows poorer creep resistance which is mainly attributed to the surface oxidation of excess rare earth Pr. In addition, Dorn model has been used to describe the creep behavior and to obtain stress exponents of the SAC-Ga solder alloys bearing Pr. The strengthening mechanism of creep resistance in SAC-Ga solder alloys bearing Pr is that when encountering refined and well-distributed Cu6Sn5 IMCs, a dislocation line cannot climb through the IMCs but bypass the IMCs, thus leading to a decrease in the creep deformation of the solder alloys bearing Pr.