Teacher's Corner: An R Shiny App for Sensitivity Analysis for Latent Growth Curve Mediation.

IF 2.5 2区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Structural Equation Modeling: A Multidisciplinary Journal Pub Date : 2022-01-01 Epub Date: 2022-03-25 DOI:10.1080/10705511.2022.2045203
Eric S Kruger, Davood Tofighi, Yu-Yu Hsiao, David P MacKinnon, M Lee Van Horn, Katie Witkiewitz
{"title":"Teacher's Corner: An R Shiny App for Sensitivity Analysis for Latent Growth Curve Mediation.","authors":"Eric S Kruger, Davood Tofighi, Yu-Yu Hsiao, David P MacKinnon, M Lee Van Horn, Katie Witkiewitz","doi":"10.1080/10705511.2022.2045203","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanisms of behavior change are the processes through which interventions are hypothesized to cause changes in outcomes. Latent growth curve mediation models (LGCMM) are recommended for investigating the mechanisms of behavior change because LGCMM models establish temporal precedence of change from the mediator to the outcome variable. The Correlated Augmented Mediation Sensitivity Analyses (CAMSA) App implements sensitivity analysis for LGCMM models to evaluate if a mediating path (mechanism) is robust to potential confounding variables. The CAMSA approach is described and applied to simulated data, and data from a research study exploring a mechanism of change in the treatment of substance use disorder.</p>","PeriodicalId":21964,"journal":{"name":"Structural Equation Modeling: A Multidisciplinary Journal","volume":"29 6","pages":"944-952"},"PeriodicalIF":2.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683348/pdf/nihms-1848235.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Equation Modeling: A Multidisciplinary Journal","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/10705511.2022.2045203","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Mechanisms of behavior change are the processes through which interventions are hypothesized to cause changes in outcomes. Latent growth curve mediation models (LGCMM) are recommended for investigating the mechanisms of behavior change because LGCMM models establish temporal precedence of change from the mediator to the outcome variable. The Correlated Augmented Mediation Sensitivity Analyses (CAMSA) App implements sensitivity analysis for LGCMM models to evaluate if a mediating path (mechanism) is robust to potential confounding variables. The CAMSA approach is described and applied to simulated data, and data from a research study exploring a mechanism of change in the treatment of substance use disorder.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
教师园地:用于潜在增长曲线调解敏感性分析的 R Shiny 应用程序。
行为改变的机制是假设干预措施导致结果改变的过程。推荐使用潜伏增长曲线中介模型(LGCMM)来研究行为变化的机制,因为 LGCMM 模型确定了从中介变量到结果变量之间变化的时间优先性。相关增强中介敏感性分析(CAMSA)应用程序对 LGCMM 模型进行敏感性分析,以评估中介路径(机制)是否对潜在的混杂变量具有稳健性。本文介绍了 CAMSA 方法,并将其应用于模拟数据和一项探索药物使用障碍治疗中的变化机制的研究数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
11.70%
发文量
71
审稿时长
>12 weeks
期刊介绍: Structural Equation Modeling: A Multidisciplinary Journal publishes refereed scholarly work from all academic disciplines interested in structural equation modeling. These disciplines include, but are not limited to, psychology, medicine, sociology, education, political science, economics, management, and business/marketing. Theoretical articles address new developments; applied articles deal with innovative structural equation modeling applications; the Teacher’s Corner provides instructional modules on aspects of structural equation modeling; book and software reviews examine new modeling information and techniques; and advertising alerts readers to new products. Comments on technical or substantive issues addressed in articles or reviews published in the journal are encouraged; comments are reviewed, and authors of the original works are invited to respond.
期刊最新文献
A Simple Two-Step Procedure for Fitting Fully Unrestricted Exploratory Factor Analytic Solutions with Correlated Residuals Latent Profile Transition Analysis with Random Intercepts (RI-LPTA) Under-Fitting and Over-Fitting: The Performance of Bayesian Model Selection and Fit Indices in SEM GSCA Pro—Free Stand-Alone Software for Structural Equation Modeling On the Performance of Horseshoe Priors for Inducing Sparsity in Structural Equation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1