Venetia Bazioti, Anouk M La Rose, Sjors Maassen, Frans Bianchi, Rinse de Boer, Benedek Halmos, Deepti Dabral, Emma Guilbaud, Arthur Flohr-Svendsen, Anouk G Groenen, Alejandro Marmolejo-Garza, Mirjam H Koster, Niels J Kloosterhuis, Rick Havinga, Alle T Pranger, Miriam Langelaar-Makkinje, Alain de Bruin, Bart van de Sluis, Alison B Kohan, Laurent Yvan-Charvet, Geert van den Bogaart, Marit Westerterp
{"title":"T cell cholesterol efflux suppresses apoptosis and senescence and increases atherosclerosis in middle aged mice.","authors":"Venetia Bazioti, Anouk M La Rose, Sjors Maassen, Frans Bianchi, Rinse de Boer, Benedek Halmos, Deepti Dabral, Emma Guilbaud, Arthur Flohr-Svendsen, Anouk G Groenen, Alejandro Marmolejo-Garza, Mirjam H Koster, Niels J Kloosterhuis, Rick Havinga, Alle T Pranger, Miriam Langelaar-Makkinje, Alain de Bruin, Bart van de Sluis, Alison B Kohan, Laurent Yvan-Charvet, Geert van den Bogaart, Marit Westerterp","doi":"10.1038/s41467-022-31135-4","DOIUrl":null,"url":null,"abstract":"<p><p>Atherosclerosis is a chronic inflammatory disease driven by hypercholesterolemia. During aging, T cells accumulate cholesterol, potentially affecting inflammation. However, the effect of cholesterol efflux pathways mediated by ATP-binding cassette A1 and G1 (ABCA1/ABCG1) on T cell-dependent age-related inflammation and atherosclerosis remains poorly understood. In this study, we generate mice with T cell-specific Abca1/Abcg1-deficiency on the low-density-lipoprotein-receptor deficient (Ldlr<sup>-/-</sup>) background. T cell Abca1/Abcg1-deficiency decreases blood, lymph node, and splenic T cells, and increases T cell activation and apoptosis. T cell Abca1/Abcg1-deficiency induces a premature T cell aging phenotype in middle-aged (12-13 months) Ldlr<sup>-/-</sup> mice, reflected by upregulation of senescence markers. Despite T cell senescence and enhanced T cell activation, T cell Abca1/Abcg1-deficiency decreases atherosclerosis and aortic inflammation in middle-aged Ldlr<sup>-/-</sup> mice, accompanied by decreased T cells in atherosclerotic plaques. We attribute these effects to T cell apoptosis downstream of T cell activation, compromising T cell functionality. Collectively, we show that T cell cholesterol efflux pathways suppress T cell apoptosis and senescence, and induce atherosclerosis in middle-aged Ldlr<sup>-/-</sup> mice.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"13 1","pages":"3799"},"PeriodicalIF":15.7000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9249754/pdf/","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-022-31135-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 17
Abstract
Atherosclerosis is a chronic inflammatory disease driven by hypercholesterolemia. During aging, T cells accumulate cholesterol, potentially affecting inflammation. However, the effect of cholesterol efflux pathways mediated by ATP-binding cassette A1 and G1 (ABCA1/ABCG1) on T cell-dependent age-related inflammation and atherosclerosis remains poorly understood. In this study, we generate mice with T cell-specific Abca1/Abcg1-deficiency on the low-density-lipoprotein-receptor deficient (Ldlr-/-) background. T cell Abca1/Abcg1-deficiency decreases blood, lymph node, and splenic T cells, and increases T cell activation and apoptosis. T cell Abca1/Abcg1-deficiency induces a premature T cell aging phenotype in middle-aged (12-13 months) Ldlr-/- mice, reflected by upregulation of senescence markers. Despite T cell senescence and enhanced T cell activation, T cell Abca1/Abcg1-deficiency decreases atherosclerosis and aortic inflammation in middle-aged Ldlr-/- mice, accompanied by decreased T cells in atherosclerotic plaques. We attribute these effects to T cell apoptosis downstream of T cell activation, compromising T cell functionality. Collectively, we show that T cell cholesterol efflux pathways suppress T cell apoptosis and senescence, and induce atherosclerosis in middle-aged Ldlr-/- mice.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.