Vertical distribution of oxides of nitrogen in the semi-urban planetary boundary layer: mixing ratios, sources and transport

Thomas C. Moore , Lee J. Sullivan , Paul A. Roelle, Viney P. Aneja
{"title":"Vertical distribution of oxides of nitrogen in the semi-urban planetary boundary layer: mixing ratios, sources and transport","authors":"Thomas C. Moore ,&nbsp;Lee J. Sullivan ,&nbsp;Paul A. Roelle,&nbsp;Viney P. Aneja","doi":"10.1016/S1465-9972(00)00028-3","DOIUrl":null,"url":null,"abstract":"<div><p>Measurements of the mixing ratios of tropospheric NO and NO<em><sub>Y</sub></em> (defined as nitric oxide (NO)<!--> <!-->+<!--> <!-->nitrogen dioxide (NO<sub>2</sub>)<!--> <!-->+<!--> <!-->peroxyacetyl nitrate (PAN)<!--> <!-->+<!--> <!-->nitric acid (HNO<sub>3</sub>)<!--> <!-->+<!--> <!-->particulate nitrate (NO<sub>3</sub><sup>−</sup>)<!--> <!-->+<!--> <!-->⋯) were made over a semi-urban area of central North Carolina at the surface (10 m) and on a tower at heights of 250 m (820 ft) and 433 m (1420 ft) above ground level (AGL) from December 1994 to February 1995. These measurements were compared with synoptic weather data and regional and local upper air soundings in an effort to characterize NO and NO<em><sub>Y</sub></em> in the planetary boundary layer in terms of their vertical distributions, diurnal profile, and related transport mechanisms. A pronounced decreasing vertical gradient in both NO and NO<em><sub>Y</sub></em> mixing ratios was observed, with a distinct diurnal cycle and nocturnal minimum. Furthermore, the results suggest that NO and NO<em><sub>Y</sub></em> were mixed upward from the surface during passage of synoptic meteorological features (and their associated vertical motions). Most importantly, the data reveals that mixing ratios of NO and NO<em><sub>Y</sub></em> at the elevated heights did not exist in sufficient concentrations above the inversion layer in the nocturnal boundary layer to be mixed downward upon breakup of the nocturnal inversion and affect surface measurements. Instead, concentrations of NO and NO<em><sub>Y</sub></em> were apparently mixed upward during the morning and midday hours by vertical boundary layer processes. Thus, the association of observed increases in surface NO and NO<em><sub>Y</sub></em> mixing ratios based solely on downward mixing processes is not justified in all cases, and other sources and processes for these increases must be considered, particularly over rural areas.</p></div>","PeriodicalId":100235,"journal":{"name":"Chemosphere - Global Change Science","volume":"3 1","pages":"Pages 7-23"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1465-9972(00)00028-3","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere - Global Change Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1465997200000283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Measurements of the mixing ratios of tropospheric NO and NOY (defined as nitric oxide (NO) + nitrogen dioxide (NO2) + peroxyacetyl nitrate (PAN) + nitric acid (HNO3) + particulate nitrate (NO3) + ⋯) were made over a semi-urban area of central North Carolina at the surface (10 m) and on a tower at heights of 250 m (820 ft) and 433 m (1420 ft) above ground level (AGL) from December 1994 to February 1995. These measurements were compared with synoptic weather data and regional and local upper air soundings in an effort to characterize NO and NOY in the planetary boundary layer in terms of their vertical distributions, diurnal profile, and related transport mechanisms. A pronounced decreasing vertical gradient in both NO and NOY mixing ratios was observed, with a distinct diurnal cycle and nocturnal minimum. Furthermore, the results suggest that NO and NOY were mixed upward from the surface during passage of synoptic meteorological features (and their associated vertical motions). Most importantly, the data reveals that mixing ratios of NO and NOY at the elevated heights did not exist in sufficient concentrations above the inversion layer in the nocturnal boundary layer to be mixed downward upon breakup of the nocturnal inversion and affect surface measurements. Instead, concentrations of NO and NOY were apparently mixed upward during the morning and midday hours by vertical boundary layer processes. Thus, the association of observed increases in surface NO and NOY mixing ratios based solely on downward mixing processes is not justified in all cases, and other sources and processes for these increases must be considered, particularly over rural areas.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半城市行星边界层中氮氧化物的垂直分布:混合比、来源和输送
对流层NO和NOY(定义为一氧化氮(NO) +二氧化氮(NO2) +过氧乙酰硝酸盐(PAN) +硝酸(HNO3) +颗粒硝酸盐(NO3−)+⋯)的混合比率的测量是在1994年12月至1995年2月期间在北卡罗来纳州中部的半城市地区的地表(10米)和海拔250米(820英尺)和433米(1420英尺)的高塔上进行的。将这些测量数据与天气资料以及区域和局部高空探测数据进行比较,以从垂直分布、日剖面和相关输送机制等方面描述行星边界层NO和NOY的特征。NO和NOY混合比垂直梯度明显减小,具有明显的日循环和夜间最小值。此外,在天气气象特征(及其相关的垂直运动)通过过程中,NO和NOY从地面向上混合。最重要的是,数据显示夜间边界层逆温层上方高空NO和NOY的混合比例没有足够的浓度,在夜间逆温破裂后向下混合,影响地面测量。相反,NO和NOY的浓度在上午和中午通过垂直边界层过程明显向上混合。因此,观测到的地表NO和NOY混合比的增加仅基于向下混合过程的关联在所有情况下都是不合理的,必须考虑这些增加的其他来源和过程,特别是在农村地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Methane production and theoretical consumption in UK livestock production: is a realistic balance possible? Carbon sink in cropland soils and the emission of greenhouse gases from paddy soils: a review of work in China Modeling the biogeochemical cycle of dimethylsulfide in the upper ocean: a review On the performance of SF6 permeation tubes used in determining methane emission from grazing livestock An analysis of simulated and observed global mean near-surface air temperature anomalies from 1979 to 1999: trends and attribution of causes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1