Optimal Wells turbine speeds at different wave conditions

Paresh Halder, Abdus Samad
{"title":"Optimal Wells turbine speeds at different wave conditions","authors":"Paresh Halder,&nbsp;Abdus Samad","doi":"10.1016/j.ijome.2016.05.008","DOIUrl":null,"url":null,"abstract":"<div><p>The present study aims to predict and optimize the operating range of a Wells turbine that essentially works on the principle of bidirectional flow in an ocean renewable energy system. The turbine operates in a narrow range because of variability in waves, machine geometry and low incidence angle that lead to stumpy performance of the turbine. Hence, a relationship between the fluid velocity and the turbine speed has been established to design a turbine with higher performance. The two different cases, with and without a tip groove, were considered to predict the optimal turbine speed for the different flow velocities. A multiple-surrogate based approach has been used to find correlation between the turbine speed and the air velocity, and a Reynolds-averaged Navier–Stokes equation solver evaluated the turbine performance parameters. Furthermore, several combinations of the variables (flow velocity and turbine speed) along with an objective function (efficiency) were evaluated by the solver. The grooved-casing design performs better than that of the without grooved-casing, and the mid-chord of the blade enhances the exchange of momentum among different directions and suppresses the unsteadiness.</p></div>","PeriodicalId":100705,"journal":{"name":"International Journal of Marine Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ijome.2016.05.008","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Marine Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221416691630042X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

The present study aims to predict and optimize the operating range of a Wells turbine that essentially works on the principle of bidirectional flow in an ocean renewable energy system. The turbine operates in a narrow range because of variability in waves, machine geometry and low incidence angle that lead to stumpy performance of the turbine. Hence, a relationship between the fluid velocity and the turbine speed has been established to design a turbine with higher performance. The two different cases, with and without a tip groove, were considered to predict the optimal turbine speed for the different flow velocities. A multiple-surrogate based approach has been used to find correlation between the turbine speed and the air velocity, and a Reynolds-averaged Navier–Stokes equation solver evaluated the turbine performance parameters. Furthermore, several combinations of the variables (flow velocity and turbine speed) along with an objective function (efficiency) were evaluated by the solver. The grooved-casing design performs better than that of the without grooved-casing, and the mid-chord of the blade enhances the exchange of momentum among different directions and suppresses the unsteadiness.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同波浪条件下井式水轮机的最佳转速
目前的研究旨在预测和优化威尔斯涡轮机的工作范围,该涡轮机基本上是在海洋可再生能源系统的双向流动原理上工作的。由于波浪的变化,机器的几何形状和低入射角导致涡轮机的性能不稳定,因此涡轮机在狭窄的范围内运行。因此,建立了流体速度与涡轮转速之间的关系,从而设计出性能更高的涡轮。考虑了有和没有叶尖沟槽两种不同的情况,以预测不同流速下的最佳涡轮转速。采用基于多代理的方法寻找涡轮转速与风速之间的相关性,并使用reynolds -average Navier-Stokes方程求解器对涡轮性能参数进行了评估。此外,求解器还评估了几个变量(流速和涡轮转速)与目标函数(效率)的组合。开槽机匣设计优于无开槽机匣设计,叶片中弦增强了不同方向间的动量交换,抑制了非定常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Physical scale model testing of a flexible membrane wave energy converter: Videogrammetric analysis of membrane operation A comparison of control strategies for wave energy converters Predicted power performance of a submerged membrane pressure-differential wave energy converter Ocean power technology design optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1