High-efficiency and robust M-estimates of the scale parameter on the Q-estimate basis

Pavel O. Smirnov, Ivan S. Shirokov, Georgiy L. Shevlyakov
{"title":"High-efficiency and robust M-estimates of the scale parameter on the Q-estimate basis","authors":"Pavel O. Smirnov,&nbsp;Ivan S. Shirokov,&nbsp;Georgiy L. Shevlyakov","doi":"10.1016/j.spjpm.2017.09.012","DOIUrl":null,"url":null,"abstract":"<div><p>The commonly employed highly efficient and robust <em>Q</em>-estimate of the scale parameter proposed by Rousseeuw and Croux has been approximated using computationally fast Huber <em>M</em>-estimates. The suggested <em>M</em>-estimates were shown to be robust and highly efficient for an arbitrary underlying data distribution due to correctly choosing the approximation parameters. The following indicators of the efficiency and robustness of <em>M</em>-estimates of scale were computed: their asymptotic variances, influence functions and breakdown points. Special attention was given to the particular cases of the Gaussian and Cauchy distributions. It is noteworthy that for the Cauchy distribution, the suggested robust estimate of scale coincides with the maximal likelihood estimate. Finally, the computation time of these highly efficient and robust estimates of scale is 3–4 times less than for the corresponding <em>Q</em>-estimates.</p></div>","PeriodicalId":41808,"journal":{"name":"St Petersburg Polytechnic University Journal-Physics and Mathematics","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.spjpm.2017.09.012","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Polytechnic University Journal-Physics and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405722317300981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

The commonly employed highly efficient and robust Q-estimate of the scale parameter proposed by Rousseeuw and Croux has been approximated using computationally fast Huber M-estimates. The suggested M-estimates were shown to be robust and highly efficient for an arbitrary underlying data distribution due to correctly choosing the approximation parameters. The following indicators of the efficiency and robustness of M-estimates of scale were computed: their asymptotic variances, influence functions and breakdown points. Special attention was given to the particular cases of the Gaussian and Cauchy distributions. It is noteworthy that for the Cauchy distribution, the suggested robust estimate of scale coincides with the maximal likelihood estimate. Finally, the computation time of these highly efficient and robust estimates of scale is 3–4 times less than for the corresponding Q-estimates.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在q估计的基础上对尺度参数进行高效稳健的m估计
常用的由Rousseeuw和Croux提出的尺度参数的高效鲁棒q估计已经使用计算速度快的Huber m估计进行了近似。由于正确选择近似参数,所建议的m估计对于任意底层数据分布具有鲁棒性和高效率。计算了尺度m估计的效率和稳健性的以下指标:它们的渐近方差、影响函数和崩溃点。特别注意高斯分布和柯西分布的特殊情况。值得注意的是,对于柯西分布,建议的稳健估计规模与最大似然估计一致。最后,这些高效且稳健的规模估计的计算时间比相应的q估计少3-4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
50.00%
发文量
0
期刊最新文献
A comparison of potential functions for molecular dynamic simulation of methane sorption in the silicalite CONTRIBUTION OF INTERNAL IONIZATION PROCESSES IN SEMICONDUCTORS TO RADIATIVE LOSSES OF RELATIVISTIC ELECTRONS A study of thermal regime in the high-power LED arrays Greenish blue luminescence in NaCd(1−x) SO4F: XEu2+ halosulphate phosphor for solid state lightening devices N = 28 isotones: Shape coexistence towards proton-deficient side
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1