3D Bioprinted Spheroidal Droplets for Engineering the Heterocellular Coupling between Cardiomyocytes and Cardiac Fibroblasts.

IF 10.5 Q1 ENGINEERING, BIOMEDICAL Cyborg and bionic systems (Washington, D.C.) Pub Date : 2021-01-01 Epub Date: 2021-12-28 DOI:10.34133/2021/9864212
Raven El Khoury, Naveen Nagiah, Joel A Mudloff, Vikram Thakur, Munmun Chattopadhyay, Binata Joddar
{"title":"3D Bioprinted Spheroidal Droplets for Engineering the Heterocellular Coupling between Cardiomyocytes and Cardiac Fibroblasts.","authors":"Raven El Khoury, Naveen Nagiah, Joel A Mudloff, Vikram Thakur, Munmun Chattopadhyay, Binata Joddar","doi":"10.34133/2021/9864212","DOIUrl":null,"url":null,"abstract":"<p><p>Since conventional human cardiac two-dimensional (2D) cell culture and multilayered three-dimensional (3D) models fail in recapitulating cellular complexity and possess inferior translational capacity, we designed and developed a high-throughput scalable 3D bioprinted cardiac spheroidal droplet-organoid model with cardiomyocytes and cardiac fibroblasts that can be used for drug screening or regenerative engineering applications. This study helped establish the parameters for bioprinting and cross-linking a gelatin-alginate-based bioink into 3D spheroidal droplets. A flattened disk-like structure developed in prior studies from our laboratory was used as a control. The microstructural and mechanical stability of the 3D spheroidal droplets was assessed and was found to be ideal for a cardiac scaffold. Adult human cardiac fibroblasts and AC16 cardiomyocytes were mixed in the bioink and bioprinted. Live-dead assay and flow cytometry analysis revealed robust biocompatibility of the 3D spheroidal droplets that supported the growth and proliferation of the cardiac cells in the long-term cultures. Moreover, the heterocellular gap junctional coupling between the cardiomyocytes and cardiac fibroblasts further validated the 3D cardiac spheroidal droplet model.</p>","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":"2021 ","pages":""},"PeriodicalIF":10.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9254634/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyborg and bionic systems (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/2021/9864212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Since conventional human cardiac two-dimensional (2D) cell culture and multilayered three-dimensional (3D) models fail in recapitulating cellular complexity and possess inferior translational capacity, we designed and developed a high-throughput scalable 3D bioprinted cardiac spheroidal droplet-organoid model with cardiomyocytes and cardiac fibroblasts that can be used for drug screening or regenerative engineering applications. This study helped establish the parameters for bioprinting and cross-linking a gelatin-alginate-based bioink into 3D spheroidal droplets. A flattened disk-like structure developed in prior studies from our laboratory was used as a control. The microstructural and mechanical stability of the 3D spheroidal droplets was assessed and was found to be ideal for a cardiac scaffold. Adult human cardiac fibroblasts and AC16 cardiomyocytes were mixed in the bioink and bioprinted. Live-dead assay and flow cytometry analysis revealed robust biocompatibility of the 3D spheroidal droplets that supported the growth and proliferation of the cardiac cells in the long-term cultures. Moreover, the heterocellular gap junctional coupling between the cardiomyocytes and cardiac fibroblasts further validated the 3D cardiac spheroidal droplet model.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维生物打印球形液滴用于设计心肌细胞与心脏成纤维细胞之间的异细胞耦合。
由于传统的人类心脏二维(2D)细胞培养和多层三维(3D)模型无法再现细胞的复杂性,而且转化能力较差,我们设计并开发了一种具有心肌细胞和心脏成纤维细胞的高通量可扩展三维生物打印心脏球状液滴-类器官模型,可用于药物筛选或再生工程应用。这项研究帮助确定了将明胶-海藻酸盐基生物墨水生物打印和交联成三维球状液滴的参数。我们实验室在之前的研究中开发的扁平圆盘状结构被用作对照。我们对三维球状液滴的微观结构和机械稳定性进行了评估,发现它是理想的心脏支架。将成人人类心脏成纤维细胞和 AC16 心肌细胞混合在生物墨水中并进行生物打印。活死实验和流式细胞仪分析表明,三维球形液滴具有良好的生物相容性,可支持心脏细胞在长期培养中的生长和增殖。此外,心肌细胞和心脏成纤维细胞之间的异细胞间隙连接进一步验证了三维心脏球形液滴模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
21 weeks
期刊最新文献
Multi-Section Magnetic Soft Robot with Multirobot Navigation System for Vasculature Intervention. Advances in Biointegrated Wearable and Implantable Optoelectronic Devices for Cardiac Healthcare. Sensors and Devices Guided by Artificial Intelligence for Personalized Pain Medicine. Modeling Grid Cell Distortions with a Grid Cell Calibration Mechanism. Federated Abnormal Heart Sound Detection with Weak to No Labels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1