{"title":"Essential Roles of TDO2 in Gastric Cancer: TDO2 Is Associated with Cancer Progression, Patient Survival, PD-L1 Expression, and Cancer Stem Cells.","authors":"Quoc Thang Pham, Daiki Taniyama, Shintaro Akabane, Tsuyoshi Takashima, Ryota Maruyama, Yohei Sekino, Kazuhiro Sentani, Wataru Yasui, Naohide Oue","doi":"10.1159/000523750","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Tryptophan metabolism has been shown to be involved in tumor development. Two main tryptophan-degrading enzymes, tryptophan 2,3-dioxygenase (TDO2) and indoleamine 2,3-dioxygenase 1 (IDO1), may potently promote cancer cell survival and distant metastasis in diverse types of cancer, such as lung and breast cancer. IDO1 overexpression is an independent prognosticator in gastric cancer (GC). This work aimed to uncover the expression of TDO2 and its clinicopathologic significance in GC.</p><p><strong>Methods: </strong>TDO2 expression was evaluated in public data of The Cancer Genome Atlas cohort STAD and in two different GC cohorts. Correlation between TDO2 and immune cell infiltrates as well as PD-L1 tumor staining was investigated. The biofunction of TDO2 was examined with MTT, colony formation, and spheroid formation assays by RNA interference.</p><p><strong>Results: </strong>TDO2 expression was correlated with both progressive disease and clinical outcome, and its expression was an independent predictor of prognosis in GC. TDO2 expression was correlated with infiltration of immune cells and tumor expression of PD-L1. Inhibition of TDO2 expression suppressed cell proliferation, colony formation, and cell invasion of GC cells. Additionally, suppression of TDO2 expression inhibited spheroid body-formation and viability of GC organoids.</p><p><strong>Conclusion: </strong>Our data show that TDO2 might be a crucial marker for predicting prognosis and targeted therapy in GC.</p>","PeriodicalId":19805,"journal":{"name":"Pathobiology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000523750","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Introduction: Tryptophan metabolism has been shown to be involved in tumor development. Two main tryptophan-degrading enzymes, tryptophan 2,3-dioxygenase (TDO2) and indoleamine 2,3-dioxygenase 1 (IDO1), may potently promote cancer cell survival and distant metastasis in diverse types of cancer, such as lung and breast cancer. IDO1 overexpression is an independent prognosticator in gastric cancer (GC). This work aimed to uncover the expression of TDO2 and its clinicopathologic significance in GC.
Methods: TDO2 expression was evaluated in public data of The Cancer Genome Atlas cohort STAD and in two different GC cohorts. Correlation between TDO2 and immune cell infiltrates as well as PD-L1 tumor staining was investigated. The biofunction of TDO2 was examined with MTT, colony formation, and spheroid formation assays by RNA interference.
Results: TDO2 expression was correlated with both progressive disease and clinical outcome, and its expression was an independent predictor of prognosis in GC. TDO2 expression was correlated with infiltration of immune cells and tumor expression of PD-L1. Inhibition of TDO2 expression suppressed cell proliferation, colony formation, and cell invasion of GC cells. Additionally, suppression of TDO2 expression inhibited spheroid body-formation and viability of GC organoids.
Conclusion: Our data show that TDO2 might be a crucial marker for predicting prognosis and targeted therapy in GC.
期刊介绍:
''Pathobiology'' offers a valuable platform for the publication of high-quality original research into the mechanisms underlying human disease. Aiming to serve as a bridge between basic biomedical research and clinical medicine, the journal welcomes articles from scientific areas such as pathology, oncology, anatomy, virology, internal medicine, surgery, cell and molecular biology, and immunology. Published bimonthly, ''Pathobiology'' features original research papers and reviews on translational research. The journal offers the possibility to publish proceedings of meetings dedicated to one particular topic.