Unveiling the underlying molecular mechanisms of high lutein production efficiency in Chlorella sorokiniana FZU60 under a mixotrophy/photoautotrophy two-stage strategy by transcriptomic, physiological, and biochemical analyses.

Ruijuan Ma, Zhen Zhang, Hong Fang, Xinyu Liu, Shih-Hsin Ho, Youping Xie, Jianfeng Chen
{"title":"Unveiling the underlying molecular mechanisms of high lutein production efficiency in Chlorella sorokiniana FZU60 under a mixotrophy/photoautotrophy two-stage strategy by transcriptomic, physiological, and biochemical analyses.","authors":"Ruijuan Ma,&nbsp;Zhen Zhang,&nbsp;Hong Fang,&nbsp;Xinyu Liu,&nbsp;Shih-Hsin Ho,&nbsp;Youping Xie,&nbsp;Jianfeng Chen","doi":"10.1186/s13068-023-02300-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chlorella sorokiniana FZU60 is a promising lutein producing microalga. A mixotrophy/photoautotrophy two-stage strategy can achieve high biomass concentration at stage 1 and high lutein content at stage 2, leading to excellent lutein production efficiency in C. sorokiniana FZU60. However, the underlying molecular mechanisms are still unclear, restraining the further improvement of lutein production.</p><p><strong>Results: </strong>In this study, physiological and biochemical analysis revealed that photochemical parameters (Fv/Fm and NPQ) and photosynthetic pigments contents increased during the shift from mixotrophy to photoautotrophy, indicating that photosynthesis and photoprotection enhanced. Furthermore, transcriptomic analysis revealed that the glyoxylate cycle and TCA cycle were suppressed after the shift to photoautotrophy, leading to a decreased cell growth rate. However, the gene expression levels of photosynthesis, CO<sub>2</sub> fixation, autophagy, and lutein biosynthesis were upregulated at the photoautotrophy stage, demonstrating that microalgal cells could obtain more precursor to synthesize lutein for enhancing photosynthesis and reducing reactive oxygen species.</p><p><strong>Conclusions: </strong>The findings help to elucidate the molecular mechanisms for high lutein production efficiency of C. sorokiniana FZU60 under the mixotrophy/photoautotrophy strategy, identify key functional genes responsible for lutein biosynthesis, and shed light on further improvement of lutein production by genetic or metabolic engineering in future studies.</p>","PeriodicalId":9125,"journal":{"name":"Biotechnology for Biofuels and Bioproducts","volume":"16 1","pages":"47"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018854/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels and Bioproducts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13068-023-02300-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Background: Chlorella sorokiniana FZU60 is a promising lutein producing microalga. A mixotrophy/photoautotrophy two-stage strategy can achieve high biomass concentration at stage 1 and high lutein content at stage 2, leading to excellent lutein production efficiency in C. sorokiniana FZU60. However, the underlying molecular mechanisms are still unclear, restraining the further improvement of lutein production.

Results: In this study, physiological and biochemical analysis revealed that photochemical parameters (Fv/Fm and NPQ) and photosynthetic pigments contents increased during the shift from mixotrophy to photoautotrophy, indicating that photosynthesis and photoprotection enhanced. Furthermore, transcriptomic analysis revealed that the glyoxylate cycle and TCA cycle were suppressed after the shift to photoautotrophy, leading to a decreased cell growth rate. However, the gene expression levels of photosynthesis, CO2 fixation, autophagy, and lutein biosynthesis were upregulated at the photoautotrophy stage, demonstrating that microalgal cells could obtain more precursor to synthesize lutein for enhancing photosynthesis and reducing reactive oxygen species.

Conclusions: The findings help to elucidate the molecular mechanisms for high lutein production efficiency of C. sorokiniana FZU60 under the mixotrophy/photoautotrophy strategy, identify key functional genes responsible for lutein biosynthesis, and shed light on further improvement of lutein production by genetic or metabolic engineering in future studies.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过转录组学、生理生化分析揭示小球藻FZU60在混合营养/光自养两阶段策略下高叶黄素生产效率的潜在分子机制。
背景:小球藻(Chlorella sorokiniana) FZU60是一种很有前途的叶黄素生产微藻。混合自养/光自养两阶段策略可以实现第1阶段的高生物量浓度和第2阶段的高叶黄素含量,从而使sorokiniana FZU60具有优异的叶黄素生产效率。然而,其潜在的分子机制尚不清楚,制约了叶黄素产量的进一步提高。结果:本研究的生理生化分析表明,在由混合营养向光自养转变的过程中,光化学参数(Fv/Fm和NPQ)及光合色素含量均有所增加,表明光合作用和光保护能力增强。此外,转录组学分析显示,在向光自养转变后,乙醛酸循环和TCA循环被抑制,导致细胞生长速度下降。然而,光合作用、CO2固定、自噬和叶黄素生物合成的基因表达水平在光自养阶段上调,表明微藻细胞可以获得更多的前体细胞来合成叶黄素,以增强光合作用和减少活性氧。结论:本研究结果有助于阐明C. sorokiniana FZU60在混合营养/光自养策略下高产叶黄素的分子机制,确定叶黄素生物合成的关键功能基因,为今后研究通过遗传或代谢工程进一步提高叶黄素产量提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Alanine dehydrogenases from four different microorganisms: characterization and their application in L-alanine production. A high-throughput dual system to screen polyphosphate kinase mutants for efficient ATP regeneration in L-theanine biocatalysis. Unravelling and engineering an operon involved in the side-chain degradation of sterols in Mycolicibacterium neoaurum for the production of steroid synthons. Correction: Secretion of collagenases by Saccharomyces cerevisiae for collagen degradation. Engineering Saccharomyces cerevisiae for improved biofilm formation and ethanol production in continuous fermentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1