B-line Elastography Measurement of Lung Parenchymal Elasticity.

IF 2.5 4区 医学 Q1 ACOUSTICS Ultrasonic Imaging Pub Date : 2023-01-01 DOI:10.1177/01617346221149141
Ren Koda, Hayato Taniguchi, Kei Konno, Yoshiki Yamakoshi
{"title":"B-line Elastography Measurement of Lung Parenchymal Elasticity.","authors":"Ren Koda,&nbsp;Hayato Taniguchi,&nbsp;Kei Konno,&nbsp;Yoshiki Yamakoshi","doi":"10.1177/01617346221149141","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes a method to determine the elasticity of the lung parenchyma from the B-line Doppler signal observed using continuous shear wave elastography, which uses a small vibrator placed on the tissue surface to propagate continuous shear waves with a vibration frequency of approximately 100 Hz. Since the B-line is generated by multiple reflections in fluid-storing alveoli near the lung surface, the ultrasonic multiple-reflection signal from the B-line is affected by the Doppler shift due to shear waves propagating in the lung parenchyma. When multiple B-lines are observed, the propagation velocity can be estimated by measuring the difference in propagation time between the B-lines. Therefore, continuous shear wave elastography can be used to determine the elasticity of the lung parenchyma by measuring the phase difference of shear wave between the B-lines. In this study, three elastic sponges (soft, medium, and hard) with embedded glass beads were used to simulate fluid-storing alveoli. Shear wave velocity measured using the proposed method was compared with that calculated using Young's modulus obtained from compression measurement. Using the proposed method, the measured shear wave velocities (mean ± S.D.) were 3.78 ± 0.23, 4.24 ± 0.12, and 5.06 ± 0.05 m/s for soft, medium, and hard sponges, respectively, which deviated by a maximum of 5.37% from the values calculated using the measured Young's moduli. The shear wave velocities of the sponge phantom were in a velocity range similar to the mean shear wave velocities of healthy and diseased lungs reported by magnetic resonance elastography (3.25 and 4.54 m/s, respectively). B-line elastography may enable emergency diagnoses of acute lung disease using portable ultrasonic echo devices.</p>","PeriodicalId":49401,"journal":{"name":"Ultrasonic Imaging","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonic Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01617346221149141","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a method to determine the elasticity of the lung parenchyma from the B-line Doppler signal observed using continuous shear wave elastography, which uses a small vibrator placed on the tissue surface to propagate continuous shear waves with a vibration frequency of approximately 100 Hz. Since the B-line is generated by multiple reflections in fluid-storing alveoli near the lung surface, the ultrasonic multiple-reflection signal from the B-line is affected by the Doppler shift due to shear waves propagating in the lung parenchyma. When multiple B-lines are observed, the propagation velocity can be estimated by measuring the difference in propagation time between the B-lines. Therefore, continuous shear wave elastography can be used to determine the elasticity of the lung parenchyma by measuring the phase difference of shear wave between the B-lines. In this study, three elastic sponges (soft, medium, and hard) with embedded glass beads were used to simulate fluid-storing alveoli. Shear wave velocity measured using the proposed method was compared with that calculated using Young's modulus obtained from compression measurement. Using the proposed method, the measured shear wave velocities (mean ± S.D.) were 3.78 ± 0.23, 4.24 ± 0.12, and 5.06 ± 0.05 m/s for soft, medium, and hard sponges, respectively, which deviated by a maximum of 5.37% from the values calculated using the measured Young's moduli. The shear wave velocities of the sponge phantom were in a velocity range similar to the mean shear wave velocities of healthy and diseased lungs reported by magnetic resonance elastography (3.25 and 4.54 m/s, respectively). B-line elastography may enable emergency diagnoses of acute lung disease using portable ultrasonic echo devices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
b线弹性成像测量肺实质弹性。
本文提出了一种利用连续横波弹性成像观察到的b线多普勒信号来确定肺实质弹性的方法,该方法利用放置在组织表面的小型振动器传播振动频率约为100hz的连续横波。由于b线是由靠近肺表面的储液肺泡内的多次反射产生的,因此b线的超声多次反射信号受到肺实质内横波传播的多普勒频移的影响。当观测到多条b线时,可以通过测量b线之间的传播时间差来估计传播速度。因此,连续横波弹性成像可以通过测量横波在b线之间的相位差来确定肺实质的弹性。在本研究中,使用嵌入玻璃珠的三种弹性海绵(软、中、硬)来模拟储液肺泡。用该方法测得的横波速度与由压缩测量得到的杨氏模量计算的横波速度进行了比较。采用该方法,软海绵、中海绵和硬海绵的剪切波速(平均±S.D.)分别为3.78±0.23、4.24±0.12和5.06±0.05 m/s,与杨氏模量计算值的偏差最大为5.37%。海绵影的横波速度与磁共振弹性成像报告的健康肺和病变肺的平均横波速度(分别为3.25 m/s和4.54 m/s)相似。b线弹性成像可以使用便携式超声回声设备对急性肺部疾病进行紧急诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ultrasonic Imaging
Ultrasonic Imaging 医学-工程:生物医学
CiteScore
5.10
自引率
8.70%
发文量
15
审稿时长
>12 weeks
期刊介绍: Ultrasonic Imaging provides rapid publication for original and exceptional papers concerned with the development and application of ultrasonic-imaging technology. Ultrasonic Imaging publishes articles in the following areas: theoretical and experimental aspects of advanced methods and instrumentation for imaging
期刊最新文献
Image Features and Diagnostic Value of Contrast-Enhanced Ultrasound for Ductal Carcinoma In Situ of the Breast: Preliminary Findings. Ultrasonic Imaging of Deeper Bone Defect Using Virtual Source Synthetic Aperture with Phased Shift Migration: A Phantom Study. Predictive Value of the Nomogram Model Based on Multimodal Ultrasound Features for Benign and Malignant Thyroid Nodules of C-TIRADS Category 4. High Frequency Ultrasound Transducer Based on Sm-Doped Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 Ceramic for Intravascular Ultrasound Imaging. Development and Assessment of a Predictive Model for Ki-67 Expression Using Ultrasound Indicators and Non-Morphological Magnetic Resonance Imaging Parameters Before Breast Cancer Therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1