Marcio Andrey Teixeira, Maede Zolanvari, Khaled M. Khan, Raj Jain, Nader Meskin
{"title":"Flow-based intrusion detection algorithm for supervisory control and data acquisition systems: A real-time approach","authors":"Marcio Andrey Teixeira, Maede Zolanvari, Khaled M. Khan, Raj Jain, Nader Meskin","doi":"10.1049/cps2.12016","DOIUrl":null,"url":null,"abstract":"<p>Intrusion detection in supervisory control and data acquisition (SCADA) systems is integral because of the critical roles of these systems in industries. However, available approaches in the literature lack representative flow-based datasets and reliable real-time adaption and evaluation. A publicly available labelled dataset to support flow-based intrusion detection research specific to SCADA systems is presented. Cyberattacks were carried out against our SCADA system test bed to generate this flow-based dataset. Moreover, a flow-based intrusion detection system (IDS) is developed for SCADA systems using a deep learning algorithm. We used the dataset to develop this IDS model for real-time operations of SCADA systems to detect attacks momentarily after they happen. The results show empirical proof of the model’s adequacy when deployed online to detect cyberattacks in real time.</p>","PeriodicalId":36881,"journal":{"name":"IET Cyber-Physical Systems: Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2021-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cps2.12016","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cyber-Physical Systems: Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cps2.12016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 4
Abstract
Intrusion detection in supervisory control and data acquisition (SCADA) systems is integral because of the critical roles of these systems in industries. However, available approaches in the literature lack representative flow-based datasets and reliable real-time adaption and evaluation. A publicly available labelled dataset to support flow-based intrusion detection research specific to SCADA systems is presented. Cyberattacks were carried out against our SCADA system test bed to generate this flow-based dataset. Moreover, a flow-based intrusion detection system (IDS) is developed for SCADA systems using a deep learning algorithm. We used the dataset to develop this IDS model for real-time operations of SCADA systems to detect attacks momentarily after they happen. The results show empirical proof of the model’s adequacy when deployed online to detect cyberattacks in real time.