{"title":"Photodynamic treatment modulates various GTPase and cellular signalling pathways in Tauopathy.","authors":"Tushar Dubey, Subashchandrabose Chinnathambi","doi":"10.1080/21541248.2021.1940722","DOIUrl":null,"url":null,"abstract":"<p><p>The application of photo-excited dyes for treatment is known as photodynamic therapy (PDT). PDT is known to target GTPase proteins in cells, which are the key proteins of diverse signalling cascades which ultimately modulate cell proliferation and death. Cytoskeletal proteins play critical roles in maintaining cell integrity and cell division. Whereas, it was also observed that in neuronal cells PDT modulated actin and tubulin resulting in increased neurite growth and filopodia. Recent studies supported the role of PDT in dissolving the extracellular amyloid beta aggregates and intracellular Tau aggregates, which indicated the potential role of PDT in neurodegeneration. The advancement in the field of PDT led to its clinical approval in treatment of cancers, brain tumour, and dermatological acne. Although several question need to be answered for application of PDT in neuronal cells, but the primary studies gave a hint that it can emerge as potential therapy in neural cells.</p>","PeriodicalId":22139,"journal":{"name":"Small GTPases","volume":"13 1","pages":"183-195"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21541248.2021.1940722","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small GTPases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21541248.2021.1940722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1
Abstract
The application of photo-excited dyes for treatment is known as photodynamic therapy (PDT). PDT is known to target GTPase proteins in cells, which are the key proteins of diverse signalling cascades which ultimately modulate cell proliferation and death. Cytoskeletal proteins play critical roles in maintaining cell integrity and cell division. Whereas, it was also observed that in neuronal cells PDT modulated actin and tubulin resulting in increased neurite growth and filopodia. Recent studies supported the role of PDT in dissolving the extracellular amyloid beta aggregates and intracellular Tau aggregates, which indicated the potential role of PDT in neurodegeneration. The advancement in the field of PDT led to its clinical approval in treatment of cancers, brain tumour, and dermatological acne. Although several question need to be answered for application of PDT in neuronal cells, but the primary studies gave a hint that it can emerge as potential therapy in neural cells.