Yajing Wang, Ziwei Ding, Shiqun Lv, Jie Liu, Jie Pan, Yingcong Yu, Jun Gao, Xianfeng Huang
{"title":"Development of tLyP-1 functionalized nanoliposomes with tunable internal water phase for glioma targeting.","authors":"Yajing Wang, Ziwei Ding, Shiqun Lv, Jie Liu, Jie Pan, Yingcong Yu, Jun Gao, Xianfeng Huang","doi":"10.1080/08982104.2023.2191718","DOIUrl":null,"url":null,"abstract":"<p><p>tLyP-1 peptide is verified to recognize neuropilin (NRP) receptors overexpressed on the surface of both glioma cells and endothelial cells of angiogenic blood vessels. In the present study, tLyP-1 was conjugated with DSPE-PEG2000 to prepare tLyP-1-DSPE-PEG2000, which was further employed to prepare tLyP-1 functionalized nanoliposome (tLyP-1-Lip) to achieve enhancing target of glioblastoma. Process parameters were systematically studied to investigate the feasibility of tuning the internal water phase of nanoliposomes and encapsulating more Temozolomide (TMZ). The particle size, Zeta potential, and encapsulation efficiency of tLyP-1-Lip/TMZ were fully characterized in comparison with conventional nanoliposomes (Lip-TMZ) and PEGylated nanoliposomes (PEG-Lip/TMZ). The release behaviors of TMZ from PEG-Lip/TMZ and tLyP-1-Lip/TMZ are similar and slower than TMZ-Lip in acidic solutions. The tLyP-1-Lip/TMZ demonstrated the strongest cytotoxicity in comparison with TMZ-Lip and PEG-Lip/TMZ in both U87 and HT22 cells, and displayed the highest cellular internalization. The pharmacokinetic studies in rats revealed that tLyP-1-Lip/TMZ showed a 1.4-fold (<i>p</i><b> </b><<b> </b>0.001) increase in AUC<sub>INF_obs</sub> and a 1.4-fold decrease (<i>p</i><b> </b><<b> </b>0.01) in clearance compared with PEG-Lip/TMZ. We finally confirmed by <i>in vivo</i> imaging that tLyP-1-Lip were able to penetrate the brains and tumors of mice.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":" ","pages":"353-367"},"PeriodicalIF":3.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Liposome Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08982104.2023.2191718","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
tLyP-1 peptide is verified to recognize neuropilin (NRP) receptors overexpressed on the surface of both glioma cells and endothelial cells of angiogenic blood vessels. In the present study, tLyP-1 was conjugated with DSPE-PEG2000 to prepare tLyP-1-DSPE-PEG2000, which was further employed to prepare tLyP-1 functionalized nanoliposome (tLyP-1-Lip) to achieve enhancing target of glioblastoma. Process parameters were systematically studied to investigate the feasibility of tuning the internal water phase of nanoliposomes and encapsulating more Temozolomide (TMZ). The particle size, Zeta potential, and encapsulation efficiency of tLyP-1-Lip/TMZ were fully characterized in comparison with conventional nanoliposomes (Lip-TMZ) and PEGylated nanoliposomes (PEG-Lip/TMZ). The release behaviors of TMZ from PEG-Lip/TMZ and tLyP-1-Lip/TMZ are similar and slower than TMZ-Lip in acidic solutions. The tLyP-1-Lip/TMZ demonstrated the strongest cytotoxicity in comparison with TMZ-Lip and PEG-Lip/TMZ in both U87 and HT22 cells, and displayed the highest cellular internalization. The pharmacokinetic studies in rats revealed that tLyP-1-Lip/TMZ showed a 1.4-fold (p<0.001) increase in AUCINF_obs and a 1.4-fold decrease (p<0.01) in clearance compared with PEG-Lip/TMZ. We finally confirmed by in vivo imaging that tLyP-1-Lip were able to penetrate the brains and tumors of mice.
期刊介绍:
The Journal of Liposome Research aims to publish original, high-quality, peer-reviewed research on the topic of liposomes and related systems, lipid-based delivery systems, lipid biology, and both synthetic and physical lipid chemistry. Reviews and commentaries or editorials are generally solicited and are editorially reviewed. The Journal also publishes abstracts and conference proceedings including those from the International Liposome Society.
The scope of the Journal includes:
Formulation and characterisation of systems
Formulation engineering of systems
Synthetic and physical lipid chemistry
Lipid Biology
Biomembranes
Vaccines
Emerging technologies and systems related to liposomes and vesicle type systems
Developmental methodologies and new analytical techniques pertaining to the general area
Pharmacokinetics, pharmacodynamics and biodistribution of systems
Clinical applications.
The Journal also publishes Special Issues focusing on particular topics and themes within the general scope of the Journal.