Jung-Kyu Lee, Won Seok Choi, Jin Yong Song, Oh Seong Kwon, Yeon Jin Lee, Jong Seok Lee, Sarah Lee, Se Rin Choi, Choong Hwan Lee, Ji-Yun Lee
{"title":"Anti-inflammatory effects of <i>Athyrium yokoscense</i> extract via inhibition of the Erk1/2 and NF-κB pathways in bisphenol A-stimulated A549 cells.","authors":"Jung-Kyu Lee, Won Seok Choi, Jin Yong Song, Oh Seong Kwon, Yeon Jin Lee, Jong Seok Lee, Sarah Lee, Se Rin Choi, Choong Hwan Lee, Ji-Yun Lee","doi":"10.1007/s43188-022-00154-0","DOIUrl":null,"url":null,"abstract":"<p><p>Bisphenol A is an environmental endocrine disruptor that has similar functions to estrogen in humans. However, few studies have investigated pulmonary inflammation induced by BPA, and the effect of <i>Athyrium yokoscense</i> extract on this inflammatory response is unknown. In this study, we investigated this effect in A549 human alveolar epithelial cells. BPA at concentrations higher than 100 µM were cytotoxic to A549 cells at 24 and 48 h after treatment; however, AYE (100 µg/mL) had a protective effect against BPA-induced cytotoxicity. AYE also inhibited the generation of intracellular reactive oxygen species, expressions of cyclooxygenase-2 and extracellular signal-regulated kinase1/2 proteins, activities of phospholipase A<sub>2</sub>, COX-2, nuclear factor kappa-light-chain-enhancer of activated B cells, and proinflammatory mediators including prostaglandin E<sub>2</sub>, tumor necrosis factor-α, and interleukin-6 induced by BPA in A549 cells. This study demonstrated that BPA, which induces chronic lung disease, causes oxidative stress and inflammatory response in lung epithelial cell line, and found that AYE reduces BPA-induced oxidative stress and inflammatory response by down-regulating the Erk1/2 and NF-κB pathways.</p>","PeriodicalId":23181,"journal":{"name":"Toxicological Research","volume":"39 1","pages":"135-146"},"PeriodicalIF":1.6000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9839918/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43188-022-00154-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bisphenol A is an environmental endocrine disruptor that has similar functions to estrogen in humans. However, few studies have investigated pulmonary inflammation induced by BPA, and the effect of Athyrium yokoscense extract on this inflammatory response is unknown. In this study, we investigated this effect in A549 human alveolar epithelial cells. BPA at concentrations higher than 100 µM were cytotoxic to A549 cells at 24 and 48 h after treatment; however, AYE (100 µg/mL) had a protective effect against BPA-induced cytotoxicity. AYE also inhibited the generation of intracellular reactive oxygen species, expressions of cyclooxygenase-2 and extracellular signal-regulated kinase1/2 proteins, activities of phospholipase A2, COX-2, nuclear factor kappa-light-chain-enhancer of activated B cells, and proinflammatory mediators including prostaglandin E2, tumor necrosis factor-α, and interleukin-6 induced by BPA in A549 cells. This study demonstrated that BPA, which induces chronic lung disease, causes oxidative stress and inflammatory response in lung epithelial cell line, and found that AYE reduces BPA-induced oxidative stress and inflammatory response by down-regulating the Erk1/2 and NF-κB pathways.
期刊介绍:
Toxicological Research is the official journal of the Korean Society of Toxicology. The journal covers all areas of Toxicological Research of chemicals, drugs and environmental agents affecting human and animals, which in turn impact public health. The journal’s mission is to disseminate scientific and technical information on diverse areas of toxicological research. Contributions by toxicologists, molecular biologists, geneticists, biochemists, pharmacologists, clinical researchers and epidemiologists with a global view on public health through toxicological research are welcome. Emphasis will be given to articles providing an understanding of the toxicological mechanisms affecting animal, human and public health. In the case of research articles using natural extracts, detailed information with respect to the origin, extraction method, chemical profiles, and characterization of standard compounds to ensure the reproducible pharmacological activity should be provided.