{"title":"Integrating best effort and fixed priority scheduling","authors":"N.C Audsley, A Burns, R.I Davis, A.J Wellings","doi":"10.1016/0066-4138(94)90009-4","DOIUrl":null,"url":null,"abstract":"<div><p>Adaptive and dynamic behaviour is seen as one of the key characteristics of next generation hard real-time systems. Whilst fixed priority pre-emptive scheduling is becoming a de facto standard in real-time system implementation, it remains inflexible in its purest form. One approach to countering this criticism is to allow optional components, not guaranteed offline, to be executed at run-time. Optional components may be guaranteed a minimum set of resources at run-time, with competing resource requests scheduled according to the best-effort approach. This allows increased dynamic behaviour and improves the utility of the system. In this paper, we discuss this integration of fixed priority and best-effort scheduling.</p></div>","PeriodicalId":100097,"journal":{"name":"Annual Review in Automatic Programming","volume":"18 ","pages":"Pages 45-50"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0066-4138(94)90009-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review in Automatic Programming","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0066413894900094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Adaptive and dynamic behaviour is seen as one of the key characteristics of next generation hard real-time systems. Whilst fixed priority pre-emptive scheduling is becoming a de facto standard in real-time system implementation, it remains inflexible in its purest form. One approach to countering this criticism is to allow optional components, not guaranteed offline, to be executed at run-time. Optional components may be guaranteed a minimum set of resources at run-time, with competing resource requests scheduled according to the best-effort approach. This allows increased dynamic behaviour and improves the utility of the system. In this paper, we discuss this integration of fixed priority and best-effort scheduling.